Теплообменник пластинчатый своими руками: 403 — Доступ запрещён – Теплообменник для печи своими руками

Содержание

Теплообменник своими руками

Легко ли сделать теплообменник своими руками и как установить отопление в доме: подавляющее большинство владельцев дач и загородных домов рано или поздно задаются вопросами.

Теплообменники – промышленные и бытовые технические устройства для передачи энергии между двумя средами с разной температурой. Среды называются теплоносителями и могут быть однородными (например, жидкость/жидкость) и разнородными (жидкость/газ). В быту это важная часть системы отопления. Он может быть нагревательным и охлаждающим. В большинстве случаев на границе двух сред имеется твердая перегородка с хорошей теплопроводностью. Среды никогда не соприкасаются между собой, передача энергии всегда идёт в одном направлении. Такие аппараты называются рекуперативными. В металлургической и химической промышленности есть также регенераторные устройства, в которых один и тот же теплоноситель то отдаёт, то забирает тепло. В отдельных случаях к ним относят смесители, в которых встречаются две струи газа или жидкости с разной температурой, но в техническом плане такое определение не выдерживает критики.

Виды теплообменников

В большинстве случаев задача теплообменника – нагрев холодной жидкости, воздуха или твёрдых тел (строительных конструкций). Однако существуют и охлаждающие устройства, примеры которых мы видим в холодильниках и морозильных камерах. Рабочим теплоносителем в них служит газ фреон, принимающий на себя тепло окружающей среды. В двигателях внутреннего сгорания избыток тепла забирает тосол.

В ходе технического прогресса инженеры разработали различные варианты нагревательного теплообменного оборудования рекуперативного типа, в которых используются разные виды активных теплоносителей – горячая вода, водяной пар, нагретая парогазовая смесь, выхлопные газы двигателя внутреннего сгорания и т.д. Конструктивно можно выделить следующие виды теплообменников:

  • кожухотрубные, где под общим кожухом с низкой теплопередачей тесно проложены пучки труб с горячей и холодной жидкостями;
  • “труба в трубе”, когда конструкция состоит из внешнего и внутреннего цилиндрических контуров. По внутренней трубе циркулирует горячий теплоноситель, по внешней – холодный. При этом внутренняя труба должна быть сделана из меди или другого материала с хорошей теплопроводностью, а внешняя – из материала с минимальным коэффициентом теплопередачи – например, из полипропилена;
  • погружные (змеевиковые), представляющие собой бак с помещённым в нём проточным змеевиком. Горячая жидкость, протекающая по змеевику, нагревает содержимое бака;
  • спиральные, в которых нагревающий носитель перемещается по трубкам, завитым в форме спирали. Такая форма обеспечивает максимальную поверхность теплопередачи;
  • пластинчатые и пластинчато-ребристые. Они оптимальны как для разогрева теплоносителя внутри них, так и для нагревания воздуха и строительных конструкций вокруг.

Пример такого теплообменника – привычные плоские радиаторы отопления, которые устанавливаются вдоль стен или размещаются в них.

Пластинчатые и цилиндрические конструкции размещаются также и в зоне горения топлива в котлах м печах. В них вода мгновенно превращается в пар и устремляется по контуру.

К теплообменному оборудованию не относятся нагревательные элементы, которые сами генерируют тепло (например, за счёт высокого электрического сопротивления или химических реакций). Часто мы сталкиваемся с многоступенчатым теплообменом. Характерный пример – замкнутый нагревательный контур с горячей водой. С одной стороны, вода проходит через топку котла, где принимает энергию горения топлива, с другой — отдаёт тепло помещению через поверхность радиаторов отопления или труб, проложенных в полу.

Из чего делают теплообменники?

Лучше всех в мире проводит тепло искусственная разновидность углерода под названием графен. Его теплопроводность – более 4.000 ватт на метр-Кельвин, в 10 раз выше теплопередачи серебра. Графит и алмаз значительно отстают от графена, но тоже проводят тепло гораздо лучше любых металлов. Вполне возможно, в недалёком будущем обогрев зданий будет осуществляться с помощью батарей из кристаллического углерода. Опыты в этом направлении ведутся уже давно.

Пока же человек пользуется почти исключительно металлическими теплообменниками. Ввиду дороговизны серебра чаще всего применяются медные трубы и пластины. Теплопроводность меди – 401 Вт/(м-K), что лишь на 29 единиц меньше теплопередачи серебра. Недостаток – значительный удельный вес. Поэтому в помещениях медь заменяют лёгким алюминием. Правда, коэффициент теплопередачи этого металла в 2 раза ниже, чем у меди.

Нержавеющая сталь при всей своей коррозионной стойкости и внешней привлекательности, в качестве материала для теплопередачи не годится. Она проводит тепло в 10 раз хуже, чем серебро и медь.

Бак с теплообменником для печи

Эксплуатация отопительного и нагревательного оборудования связана с потенциальным риском. Горячие носителтели в случае протечки или прорыва трубопровода могут причинить вред здоровью и испортить имущество. Лучший вариант – использовать сертифицированное нагревательное оборудование ведущих мировых производителей. Но если вы имеете техническое образование и навыки работы своими руками, можно для начала попробовать собрать и установить несложный, но эффективный пластинчатый теплообменник для бани.

Несомненный плюс этой конструкции состоит в том, что бак с горячей водой не обязательно встраивать в печь-каменку. Бак располагается автономно, не раскаляется докрасна и не представляет опасности для неосторожных банщиков. Циркуляция воды происходит по двум жаропрочным каучуковым шлангам и медному змеевику, который размещается непосредственно в топке. Секрет в том, что входное отверстие бака находится в его дне, а выходное – ближе к крышке. Змеевик должен располагаться на уровне дна циркуляционного бака. Когда баня не топится, контур находится в состоянии покоя. Как только в змеевике повышается температура, нагретая вода устремляется через отверстие в дне бака, а её место занимает холодная вода из верхней части резервуара. В результате интенсивной конвекции бак объёмом 100 литров можно нагреть до 80 градусов меньше чем за час. Стенки бака делаются из нержавеющей стали, здесь её невысокая теплопроводность играет уже вам на руку, вода не остывает, пока не остынет воздух в бане.

Дополнительным преимуществом такой мини-системы является то, что её монтаж не требует сварки. Отверстия в корпусе бака можно просверлить перфоратором, соединения шлангов и змеевика производится с помощью герметичных переходников. Сделать такой теплообменник своими руками вполне может человек, не имеющий большого опыта работы в области водоснабжения и отопления.

Если вы не понаслышке знаете, что такое электросварка и задумались, как сделать теплообменник для дополнительного обогрева дома, то лучше всего использовать пластинчатую или трубчатую конструкцию, о которой уже говорилось выше. Оптимальный материал для такого устройства – медь. Медный регистр из труб, секция пластин или спираль размещаются непосредственно в топке печи или в нижней части дымохода. При изготовлении самодельного теплообменника важно соблюдать технические условия, следить за качеством сварных швов и герметичностью соединений. Иначе можно вместо тепла в доме или подсобных помещениях получить нешуточную аварию.

Планируя работы, важно помнить, что вход холодной воды в нагревательную часть контура (так называемая «обратка») должен располагаться в самой нижней точке контура. Если дом имеет больше одного этажа и нагрев теплоносителя ведётся постоянно, на чердаке можно устроить накопительный бак. Также не представляет сложности установить на контуре термостаты, которые будут автоматически перекрывать циркуляцию при достижении заданной температуры теплоносителя. Это поможет обеспечить оптимальную температуру в доме. Система должна иметь кран для слива теплоносителя в случае неисправности или перед консервацией дома на зиму.

виды, устройство, необходимые материалы и инструменты

Содержание статьи:

Теплообменник (ТО) – устройство, осуществляющее передачу тепла между средами с разной температурой. Такое оборудование используется в промышленности, системах отопления, кондиционирования и вентилирования. Простейшим примером служит комнатный радиатор, он нагревается от жидкости-теплоносителя и обеспечивает обогрев помещения, в котором расположен.

Строение теплообменника

Теплообменник можно изготовить своими руками в домашних условиях

Оборудование состоит из неподвижной и подвижной плит, в каждой имеются отверстия для движения среды. Между основными пластинами устанавливаются множество других более мелких второстепенных, так что каждая вторая из них повернута к соседним на 180 градусов. Второстепенные пластины герметизируются резиновыми прокладками.

Второй важный элемент ТО – теплоноситель. Он протекает по каналам гофрированной нержавейки. Холодная и горячая среды движутся по всем пластинам, кроме первой и последней, одновременно, но с разных сторон, не допуская смешивания. При высокой скорости потока воды в гофрированном слое возникает турбулентность, которая увеличивает теплообменный процесс.

К трубопроводу устройство подключается при помощи отверстий на передней и задней стенках. Теплоноситель поступает с одной стороны, проходит через все каналы и покидает оборудование с другой. Входное и выходное отверстия уплотняют специальной прокладкой.

Пластины, образующие каналы, – очень важный элемент ТО. При выборе теплообменника необходимо учитывать его рабочие характеристики. Чем выше требования к оборудованию, тем больше должно быть в нем пластин. Их число отвечает за общую эффективность устройства и способность обогреть определенное помещение.

Виды ТО

Схема и принцип работы рекуперативного теплообменника

По принципу работы оборудование делится на рекуперативное и регенеративное. В первых движущиеся теплоносители разделены стенкой. Это самый распространенный вид, он может быть различных форм и конструкций. Во втором случае с одной и той же поверхностью по очереди контактируют горячий и холодный теплоносители. Высокая температура нагревает стенку оборудования во время контакта с горячей средой, далее температура передается холодной жидкости при контакте с ней.

По назначению ТО делятся на два вида: охладительные – работают с холодной жидкостью или газом, остужая при этом горячий теплоноситель; и нагревательные – взаимодействуют с разогретой средой, отдавая энергию потокам холодной.

По конструкции теплообменники бывают нескольких видов.

Разборные

Состоят из рамы, двух концевых камер, отдельных пластин, разделенных термостойкими прокладками и крепежных болтов. Такое оборудование отличается простотой очистки и возможностью увеличения эффективности путем добавления пластин. Но разборные ТО чувствительны к качеству воды. Для продления срока их службы требуется установка дополнительных фильтров, что увеличивает стоимость проекта.

Пластинчатые

Пластинчатый теплообменник нуждается в установке дополнительных фильтров на теплоноситель

Отличаются методом соединения внутренних пластин:

  • В паяных ТО гофрированные пластины из нержавеющей стали толщиной 0,5 мм сделаны путем холодной штамповки. Между ними устанавливается прокладка из специальной термостойкой резины.
  • В сварных пластины свариваются и образуют кассеты, которые затем компонуются внутри стальных плит.
  • В полусварных ТО кассеты скрепляются посредством паронитовых соединений в конструкции из небольшого количества сварных модулей. Эти модули уплотняются резиновыми прокладками и соединяются лазерной сваркой. После чего собираются между двумя плитами при помощи болтов.

Пластинчатые теплообменники используются в условиях повышенного давления и экстремальных температурах. Такие устройства требуют минимального технического обслуживания, экономичны и отличаются высокой эффективностью. Кроме того, по необходимости можно увеличить или уменьшить эффективность оборудования путем увеличения или уменьшения количества стальных пластин.

Единственным недостатком теплообменника из гофрированной нержавейки служит чувствительность к качеству теплоносителя, необходима установки дополнительных фильтров.

Кожухотрубные

Состоят из цилиндрического корпуса, куда помещены пучки трубок, собранных в решетки. Концы труб крепятся развальцовкой, сваркой или пайкой. Достоинством такого оборудования служит нетребовательность к качеству теплоносителя и возможность использования в технических процессах, где присутствуют агрессивные среды и высокое давление (в нефтяной, газовой, химической промышленности). Недостатки кожухотрубных ТО – относительно низкая теплоотдача, большие габариты, высокая стоимость и сложность в ремонте.

Спиральные

Состоят из двух листов металла, свернутых в спирали. Внутренние края соединены перегородкой и закреплены штифтами. Такие теплообменники компактны и обладают эффектом самоочистки. Они способны работать с жидкими неоднородными средами, любого качества. При повышении скорости движения жидкости, увеличивается интенсивность теплообмена. Недостатки: сложность в изготовлении и ремонте, ограничение давления рабочей жидкости до 10 кгс/см².

Спиральный
Кожухотрубный

Двухтрубные и труба в трубе

Схема теплообменника “труба в трубе”

Первые состоят из труб разного диаметра. В качестве теплоносителя используется жидкость и газ. Устройства используются в местах с повышенным давлением, имеют высокий уровень теплоотдачи. Отличаются простотой монтажа и обслуживания. Единственный недостаток – высокая стоимость.

Теплообменник «труба в трубе» состоит из двух труб разного диаметра, соединенных между собой. Они используются при небольшом расходе теплоносителя и чтобы оборудовать дымоход.

От вида устройства зависит тип его работы. От конструкции оборудования – эффективность при эксплуатации в тех или иных условиях. Поэтому следует уделить достаточное внимание изучению особенностей каждого вида оборудования.

Изготовление теплообменника своими руками

Теплообменник для банной печи спиральный

Чтобы сделать ТО самостоятельно, необходимо обладать определенными знаниями и навыками. Для начала стоит определить, какие требования должно выполнять оборудование, от этого зависит вариант устройства. Необходимо произвести расчет материалов и выполнить чертеж будущего ТО.

Баня – место, где довольно часто возникает необходимость сделать самодельный теплообменник. Так как обычная печь с топкой нагревает ограниченный объем жидкости, может понадобиться водяной погружной витой ТО. Он предназначен для нагрева большего количества воды. В бак с нагретым теплоносителем опускается змеевик, через него проходит вода.

Когда нужно поддерживать воду в баке в горячем состоянии, емкость при помощи двух труб подачи и обратки соединяется с нагревательным котлом.

Вода-вода

Спираль из медной трубы монтируется в емкость из нержавеющей стали

Для изготовления теплообменника вода-вода своими руками понадобится:

  • Емкость из нержавеющей стали высотой 50-60 см и диаметром 30-40 см. Можно использовать и обычную сталь, но она должна быть защищена прочным полимерным покрытием.
  • Крышка для бака.
  • Медная трубка около 10м. Длину берут из расчета: на каждый виток спирали диаметром 30 см уходит примерно 1 м трубки. Лучше взять с небольшим запасом.
  • Сварочный аппарат для нержавейки и пайки меди.
  • Средства защиты: перчатки, маска для сварки.

Работы выполняются в следующем порядке:

  1. Делается крышка для бака и обеспечивается ее прочное герметичное крепление. Приваривать ее нельзя, т.к. она должна сниматься для возможности очистки внутренней части емкости. Самый удобный вариант крепления в этом случае – фланцевое. Его можно заказать сразу вместе с баком, или сделать самостоятельно. Количество отверстий рассчитывают с учетом расположения уплотнителя, обычно это 4 или 6 креплений.
  2. Далее создается вход для холодной воды на дне емкости и выход для нагретой в верхней ее части в боковой стенке. В отверстия ввариваются резьбовые переходники для подсоединения трубопровода. Следует предусмотреть возможность съема конструкции для его промывки или ремонта.
  3. Следующим этапом будет изготовление спирали из меди. Если трубка мягкая, она легко навивается с помощью оправки. Если же она жесткая, необходимо воспользоваться горелкой. На свободные концы навариваются фитинги. Они проводятся через отверстия на крышке. Важно следить за герметичностью пайки, т.к. к переходникам будет подсоединяться трубопровод для горячей воды.
  4. Заключительным этапом будет сборка теплообменника. Для этого крышка со спиралью из медной трубы и резиновым уплотнителем накрывает бак. Фланцетные крепления затягиваются при помощи болтов. При этом необходимо следить, чтобы спираль находилась строго в середине емкости, не касаясь стенок. Иначе эффективность ТО сильно понизится.

Рассмотренный вариант подходит и для нагрева воды в частных домах. Такие устройства функционируют на принципе естественной циркуляции: дровяной или газовый котел нагревает воду, она поднимается по трубе подачи вверх, отдает тепло и спускается обратно. Далее процесс повторяется.

Не всегда получается обеспечить постоянную естественную циркуляцию. Поэтому лучше использовать циркуляционный насос.

Воздушный

Воздушный теплообменник устанавливается на трубу дымохода печи

Устройство состоит из корпуса и установленных в нем трубок с нагретой средой. Через них вентилятор прогоняет поток воздуха, которому передается тепло. Происходит теплообменный процесс. Такой вариант называется калорифером.

Также для систем вентиляции и воздушного отопления применяются пластинчатые конструкции. Там роль теплопередающей стенки выполняют гофрированный металл. Где два потока воздуха, холодный и теплый, движутся перпендикулярно друг к другу. Они разделены пластинами так, что в зазорах теплый и холодный потоки располагаются поочередно. Эффективность этих устройств высока, но они сложны для самостоятельного изготовления.

Порядок монтажа воздушного ТО:

  1. Из листа металла делается корпус. Площадь его нижней части должна быть равна размеру вентилятора. Для центробежной конструкции берется короб с площадью на 70% больше чем выходная труба.
  2. В стенках короба на противоположных сторонах просверливаются отверстия для медной трубки.
  3. В проделанные отверстия устанавливаются, подготовленные отрезки труб, чтобы их края выходили за пределы короба на 2 см с обеих сторон.
  4. К свободным концам трубок привариваются угловые фитинги. Они соединяются в виде змейки. Можно сделать две параллельные. Так теплоноситель будет меньше остывать при обдуве.
  5. На выходной и входной концы припаиваются переходники с резьбой, к ним присоединяется водопровод. Подается вода, проверяют, чтобы соединения были герметичны.
  6. Корпус крепится на основание с вентилятором. Конструкция закрывается кожухом, чтобы воздушный поток не уходил в стороны.

Чтобы сделать теплообменник для отопления частного дома своими руками, необходимо представлять принцип его работы, произвести точный расчет требуемой мощности для достаточного обогрева помещения особенно в зимний период. Применять нужно наиболее теплопроводные материалы, лучшим вариантом послужит медь. Она обладает эффективностью, намного превышающей другие металлы. Все действия при изготовлении ТО следует производить аккуратно, не допуская попадания внутрь посторонних предметов. Если присутствует неуверенность в себе, лучше обратиться к опытному мастеру. Он выполнит соединение всех элементов качественно и герметично.

Разборка и сборка пластинчатого теплообменника

Содержание статьи

Введение

Разборка и сборка пластинчатого теплообменника – часть регулярного обслуживания подобного вида устройств, которые были рассмотрены в предыдущей статье.

В процессе эксплуатации теплообменного агрегата на его внутренних поверхностях скапливаются отложения, накипь, ржавчина и другие загрязнения, что приводит к снижению эффективности передачи тепла от одной среды другой. Чтобы очистить теплообменник – необходимо произвести его разборку, промывку и последующую сборку.

Если регулярное обслуживание производилось не вовремя, а также в результате экстремальных нагрузок – возможны протечки уплотнений и деформация пластин, что потребует их замену и, как следствие, разборку агрегата для доступа к поврежденным элементам. 

Схема пластинчатого теплообменника в разобранном виде

Схема пластинчатого теплообменника в разобранном виде

Как разбирать пластинчатый теплообменник

Порядок разборки пластинчатого рекуператора выглядит следующим образом:

  1. Необходимо запастись парой фрикционных ключей подходящего диаметра на соответствующий размер стяжных болтов (так для теплообменника Ридан НН 04 – это 24-ый диаметр), в случаях разбора крупных агрегатов это может быть пневмоинструмент.
  2. Чтобы не порезать руки о края пластин, используются защитные перчатки.
  3. Дренируются и отключаются подводящие трубопроводы. При этом желательно сохранять видимое расстояние между трубами и корпусом теплообменника.
  4. Для того, чтобы после обслуживания собрать пакет в правильном порядке, каждая пластина нумеруется несмываемым маркером. Альтернатива: перед разборкой проводят маркером по рёбрам рабочих пластин (по диагонали).

Маркировка пластин теплообменного аппарата при разборке

Альтернативный вариант маркировки

  1. Если аппарат новый – кусачками срезается заводская пломба, а со шпилек снимается защитная изоляция.
  2. Замеряется размер стяжки пакета пластин (понадобится при обратной сборке).
  3. Во избежание повреждения резьбы на шпильках и стяжных болтах перед разборкой необходимо смазать их поверхность «графиткой» или обработать жидкостью WD-40.
  4. Если в теплообменнике стяжных шпилек 4, то по диагонали ослабляются на 1-2 оборота стяжные гайки. Если их больше, например, 6, то вначале ослабляют центральные, и только потом переходят к угловым.

Порядок ослабления стяжных болтов при разборке пластинчатого теплообменника

Порядок ослабления стяжных болтов 

  1. Полностью раскручиваются стяжные гайки и снимаются вместе со шпильками.
  2. Подвижная плита отодвигается до упора, чтобы получить доступ к пластинам.
  3. Поочерёдно раздвигаются пластины (сначала отводятся их нижние края) и снимаются с рамы.

Вначале сдвигается нижний край пластины

Важно: металлические пластины иногда подвергаются воздействию экстремальных температур, после чего их бывает сложно разъединить. Необходимо действовать предельно аккуратно, чтобы не порвать уплотнители.

Как правильно собирать пластинчатый теплообменник

После проведения обслуживания — промывки теплообменного аппарата или замены нерабочих элементов, процесс сборки происходит в обратном порядке:

  1. Боковые плиты раздвигаются до упора.
  2. На раму устанавливается первая пластина и сдвигается к неподвижной плите. Прокладки должны быть обращены к этой плите.
  3. Ориентируясь на маркерные пометки, сделанные в процессе разборки, в правильном порядке собираются и устанавливаются оставшиеся пластины.
  4. Прижимная плита пододвигается к пакету пластин как можно ближе.
  5. Происходит установка шпилек, в случаях, когда обнаруживается их повреждение, неисправные шпильки и стяжные болты подлежат замене. 
  6. Все гайки затягиваются на один оборот, после чего необходимо убедиться, что уплотнители стоят ровно.
  7. Далее гайки затягиваются в порядке по диагонали, поочерёдно поворачивая их на 1-2 оборота.

Процесс сборки пластинчатого теплообменника хорошо показан на следующем видео:

Важно: чтобы пакет пластин встал ровно, после стяжки прижимная плита должна стоять параллельно неподвижной плите. Стягивать пакет нужно так, чтобы верхушка прижимной плиты опережала нижний край максимум на 1-2 см. Как только размер стяжки приблизится к максимально допустимому значению (которое замерялось ранее), опережение края следует уменьшить.

Запуск системы

В обратном порядке входы и выходы пластинчатого теплообменника подключаются к трубопроводам. Важно при монтаже перед подачей теплоносителей стравить воздух из внутреннего контура установки.

Если в процессе обслуживания уплотнения заменялись на новые, то подача начинается с холодного теплоносителя, дабы избежать повреждения прокладок, если же уплотнения не менялись, то подачу начинают с горячего теплоносителя, чтобы восстановить рабочие характеристики прокладок для правильного теплообмена.

В процессе запуска обязателен контроль за давлением и температурами на входе и выходе теплообменника.

Заключение

В этой статье мы постарались максимально подробно рассказать как происходит процесс разборки и сборки пластинчатого теплообменника. Если у вас остались какие-либо вопросы, то напишите или позвоните нам. В следующей статье рассмотрим применение пластинчатых теплообменников в системах отопления — подписывайтесь на новости! 

Теплообменник для горячей воды от отопления своими руками


Теплообменник для горячей воды от отопления в частном доме: из чего и как сделать своими руками

Теплообменник для горячей воды – незаменимый элемент в системе отопления частного дома. Именно он передает тепло холодной воде, тем самым нагревая ее и обеспечивая жильцов бесперебойным горячим водоснабжением. От продуктивности работы теплообменника напрямую зависит не только комфорт домочадцев, но и долговечность обогревательных приборов, поэтому очень важно, чтобы агрегат был выполнен качественно. Ввиду этого многие задаются вопросом: стоит ли мастерить теплообменник своими руками или лучше не рисковать и приобрести уже готовый? Первый вариант, безусловно, сложнее, но он вполне реализуем, если детально разобраться, как сделать теплообменник: материалы, конструктивные особенности, монтаж – обо всем этом и не только пойдет речь далее.

Особенности и функции теплообменника

Прежде чем рассматривать основные моменты изготовления и монтажа теплообменника для горячей воды, абсолютно не лишним будет узнать, что же собой представляет этот агрегат и для чего он нужен.

Теплообменник – техническое устройство, соединяющее между собой два теплоносителя: холодный и горячий. Как правило, он имеет вид обычной трубной конструкции. Между носителями беспрерывно осуществляется передача тепла – от холодного к горячему, благодаря чему дом и обеспечивается горячей водой. Причем у теплообменника нет собственного источника тепла – он использует энергию, поступающую от системы отопления.

Таким образом, главная функция агрегата – подогрев холодной воды и получение на выходе горячей. Эффективность выполнения этой функции зависит от трех факторов:

  • температурная разница между двумя теплоносителями;
  • габариты теплообменника и, следовательно, площадь контакта носителей;
  • материал, из которого изготовлен теплообменник.
Пластинчатый теплообменник

Последний фактор важен не только в плане эффективности агрегата, но и в вопросе его изготовления и монтажа. Для выполнения теплообменника может использоваться пластик, сталь и чугун. Первый материал не всегда эффективен ввиду своей низкой теплопроводности. Что касается выбора между сталью и чугуном, то здесь следует сравнить характеристики двух материалов, чтобы определиться с наиболее подходящим.

Чугунный теплообменник

Плюсы тепловых агрегатов из чугуна:

  • Высокая теплопроводность – чугунные элементы быстро нагреваются и эффективно передают тепло от одного носителя к другому.
  • Медленное остывание – теплообменники из чугуна долгое время остывают, что дает возможность сэкономить на работе отопительной системы.
  • Долговечность – чугун устойчив к воздействию слабых кислот и к образованию накипи, поэтому он менее подвержен коррозии, нежели многие другие металлы, что и обеспечивает длительный срок службы теплообменника.
  • Возможность увеличения функциональности – уже после установки агрегата к нему можно нарастить новые чугунные секции, тем самым увеличив мощность теплового оборудования.

Минусы чугунных теплообменников:

  • Громоздкость – чугунные агрегаты отличаются внушительным весом, что усложняет их эксплуатацию и обслуживание. При этом, чем больше масса теплообменника, тем выше его мощность.

Совет. Обязательно учитывайте вес чугунного теплового прибора при выборе места для его установки – важно, чтобы монтажное основание было очень прочным.

  • Хрупкость – несмотря на большой вес, агрегаты из чугуна боятся механических ударов: они быстро обзаводятся трещинами, сколами и прочими деформациями.
  • Низкая устойчивость к температурным перепадам – хоть чугун и выдерживает максимально высокие температуры, от резких термических изменений на поверхности теплообменника могут появляться трещины, что чревато значительным снижением его работоспособности.

Стальной теплообменник

Преимущества приборов из стали:

  • Повышенная теплопроводность – как и чугун, сталь оперативно нагревается и отлично передает тепло холодному носителю.
  • Низкий вес – стальные теплообменники не утяжеляют общую систему отопления, поэтому их можно использовать для обеспечения горячего водоснабжения в домах большой площади.
  • Ударопрочность – стальные конструкции очень крепкие, поэтому им не страшны механические повреждения.
  • Устойчивость к термическим изменениям – сталь без последствий выдерживает резкие перепады температур внутри системы.

Недостатки стальных теплообменников:

  • Восприимчивость к коррозии – для стали характерна низкая устойчивость к кислотным средам, что значительно сокращает срок эксплуатации теплообменника.
  • Невозможность увеличить мощность устройства путем добавления новых секций.
  • Быстрое остывание – сталь быстро отдает температуру, что увеличивает расходы на топливо.
Совет. Для изготовления качественного и долговечного теплообменника рекомендуется использовать трубы из жаропрочной стали диаметром не меньше 32 мм и толщиной стенки 5 мм и более.

Изготовление теплообменника

Конструктивно теплообменники для горячей воды могут быть двух видов: внешние и внутренние. К первым относятся подкова и змеевик. Подкова очень легка в исполнении, но не отличается высокой мощностью: для ее изготовления нужно просто сварить две чугунные или стальные трубы – в результате вы получите агрегат с маленькой площадью контакта носителей и, следовательно, с низкой мощностью нагрева поступающей холодной воды.

Более удачным вариантом внешнего теплообменника будет змеевик – он изготавливается посредством сварки нескольких труб: чем больше труб вы используете, тем мощнее будет агрегат.

Внутренний теплообменник представляет собой бак, в который помещается трубка, нагревающая поступающую в нее воду. Чтобы смастерить такой прибор своими руками, вам понадобится:

  • стальной бак для воды;
  • стальная или чугунная трубка;
  • анод;
  • регулятор мощности.

Изготовление теплообменника не займет много времени: скрутите трубку в спираль, закрепите ее на стенках бака, а затем сделайте в емкости два выхода: нижний – для холодной воды, верхний – для горячей.

Монтаж теплообменника

Когда все компоненты готовы, можно приступать к монтажу теплообменника. В случае с внешним агрегатом работа выполняется следующим образом:

  • на входе и выходе сваренной конструкции нарежьте резьбу;
  • с помощью муфты соедините вход теплообменника с системой отопления
  • используя аналогичную муфту, соедините выход теплообменника с трубой горячего водоснабжения.

Внутренний теплообменник монтируется по такой схеме:

  • вблизи батарей отопления установите бак с трубкой-термонагревателем;
  • рядом с трубкой внутри бака установите анод;
  • через нижний выход проведите в бак трубу отопительной системы, а через верхний – трубу, которая будет забирать холодную воду.

По желанию можете подключить к нагревательной трубке регулятор мощности, а к нему – термостат для управления температурой нагрева воды.

Важно! Верх и низ стального бака должны быть запаяны, чтобы предостеречь попадание в емкость воздуха, который будет забирать температуру, предназначенную для нагрева воды.

Как видим, даже столь сложный агрегат системы отопления, как теплообменник для горячей воды, вполне реально соорудить и установить своими руками. Главное – детально продумать каждый шаг: от выбора материала до финального подключения. Так что не пренебрегайте предложенной вам инструкцией – она поможет избежать ошибок в обеспечении собственного дома бесперебойной горячей водой.

Как изготовить теплообменник змеевик: видео

Теплообменник для системы отопления:

Теплообменник своими руками | Как сделать теплообменник

       Здравствуйте! Теплообменники являются составной частью отопительных систем как бытового назначения, так и промышленного. Этот сегмент рынка предлагает множество моделей теплообменников от различных производителей, характеристики которых отличаются, однако, сконструировать, собрать и подключить теплообменник своими руками также возможно. Для этого необходимо понимать принцип работы и установки этого устройства.

Что из себя представляет теплообменник?

      Схема и принцип работы этих устройств подразумевает передачу тепловой энергии от контура горячей воды к контуру холодной воды. Теплообменник – это узел или отдельный элемент магистрали системы теплоснабжения, через которое тепловая энергия передается от головного отопительного прибора к теплоносителю (вода, антифриз, пар и т. п.). Он нужен для обеспечения эффективного и рационального распределения тепла и не является самостоятельным устройством, а работает в комплексе с другим оборудованием.

      Выбор определенной конструкции теплообменника (пластинчатый, трубчатый и т. п.) во многом зависит от сферы использования этого устройства, а эффективность работы таких аппаратов зависит от того, насколько правильно был осуществлен расчет совместимости с головным нагревательным устройством системы теплоснабжения, а также насколько корректно разработана схема его установки. Для многоквартирных домов возможны варианты оборудования как зависимых систем центрального отопления, так и независимых.

      Наиболее эффективными и рациональными являются, конечно же, независимые типы, которые, наряду с главным теплонакопительным модулем, оснащены и дополнительными компактными теплообменниками для отдельной квартиры или контура центрального теплоснабжения. Их использование уместно и выгодно в магистралях с большим объемом, длинной протяженностью или во многоуровневых сооружениях. При этом важно правильно рассчитать мощность и подобрать необходимые модели для конкретных условий. Зависимые же системы менее функциональны в плане регулировки допустимой температуры и других показателей.

Изготовление теплообменника своими руками

      Перед тем как сделать теплообменник, необходимо определиться с материалом и произвести расчет эффективности изделия из различных металлов. Характеристики теплообменника, спаянного из медной трубы, считаются лучшими в плане отдачи тепловой энергии от горячей воды. По сравнению со стальными конструкциями, медные трубы проводят тепло горячей воды практически в 7 раз эффективнее. Таким образом, для одинакового количества горячей воды и энергии в системе теплоснабжения медный теплообменник потребует меньше материала, чем стальной.

      Приблизительный расчет соотношения упомянутых материалов конструкции должен быть примерно 1 м медной трубы к 7,14 м стальной трубы. Такое соотношение и расчет являются общепринятым правилом при сборке своими руками описываемых устройств.

      Расчет мощности теплообменника достаточно сложен и при его вычислении следует учитывать многие факторы, такие как диаметр трубопровода, тип металла, общую длину змеевика, среднюю температуру в головном отопительном приборе, скорость передвижения воды в системе и т. п. Правильный расчет непосредственно влияет на эффективность работы всей системы.

      Когда проводится расчет этого показателя, берут за основу формулу, при которой труба теплообменника диаметром в 50 мм в среднем дает 1 кВт тепловой энергии. Более развернутая методика расчета мощности теплообменной конструкции выглядит следующим образом:

Р = 1,16 x ΔТ/t x V;

где Р — это мощность теплообменника,

1,16 — специальный коэффициент,

ΔТ — разница температур,

t — это время нагрева,

V — объем.

      Трубчатый теплообменник изготавливается своими руками из отрезков гладкостенных труб в виде решетки. Такой принцип работы устройства теплового обмена является одним из наиболее популярных и простых при сборке. Еще более простыми считаются конструкции в виде куба или цилиндрических конструкций. Однако эффективность таких моделей немного ниже регистровых, так как циркуляция горячей воды проходит медленнее. Основной принцип, которого необходимо придерживаться при конструировании устройства – это обеспечение максимальной площади для нагрева воды, для чего могут использоваться также плоские металлические емкости, через которые будет циркулировать теплоноситель.

      Чтобы правильно рассчитать, собрать и подключить теплообменник следует придерживаться нижеперечисленных правил, а именно:

• Толщина стенок труб должна быть не менее 3 мм, в противном случае металл может быстро прогореть;

• При размещении устройства в головных нагревательных сооружениях систем теплоснабжения необходимо предусмотреть обязательный зазор между теплообменником и стенками топки, размер которого должен быть в пределах от 10 до 15 мм. При движении горячей воды металлическая конструкция расширяется, что и является причиной обеспечения компенсационного зазора;

• Расчет должен предусматривать диаметр труб или пустот в местах соединения отдельных отрезков не менее 5 мм.

      Теплообменник в виде конструкции из труб укладывается непосредственно в печь, а схема монтажа системы теплоснабжения должна предусматривать два отверстия для входа трубопровода и для его выхода. После полной укладки печи осуществляется подключение теплообменника к трубопроводной магистрали системы отопления. После чего осуществляется пробный запуск отопления и проводится проверка работы всех составных частей и устройств, а также визуальный осмотр труб на предмет возможной течи. Если расчет был правильным, то нагрев системы должен произойти достаточно быстро и равномерно.

      Помимо трубного типа, возможно собрать и пластинчатый тип теплообменника. Схема такого устройства предусматривает соединение множества пластин с небольшим зазором между ними. Пластины располагаются последовательно в зависимости от контура системы и соединены в единый модуль.

      Существует три разновидности пластинчатых теплообменников:

• Паяные;

• Разборные;

• Сварные.

      Использование пластинчатых устройств в основном распространено в промышленной сфере.

Инструкция по сборке

      Одним из наиболее популярных и востребованных типов теплообменников считаются конструкции для водяного отопления из двух горизонтальных труб и нескольких вертикальных, которые располагаются между ними. При этом все места соединений должны быть проточными.

      Чтобы сделать самодельный теплообменник для отопления, необходимо использовать стальные трубы, диаметр которых составляет не менее 2,5 см. В зависимости от размера печи подбираются оптимальные размеры продольных горизонтальных труб теплообменника с заранее подготовленными отверстиями для вертикальных труб, количество которых может колебаться от 6 до 9 штук. После чего осуществляется сварка конструкции. При этом необходимо следить за качеством шва, поскольку устройство будет использоваться в крайне агрессивной среде при высоких температурах.

      Выходной патрубок из теплообменника для подключения к системе оборудуется с верхней части, входной для подключения обратки – с нижней. При этом на каждом из патрубков нарезается резьба для муфтового соединения с основным трубопроводом.

     При расчете мощности применяется формула, при которой на каждые 3-5 кВт мощности печи требуется около 1 м2 площади устройства.


бытовой вентиляционный нагреватель своими руками, воздушная установка для частного дома

Обязательным условием комфортного проживания в частном доме является наличие правильно подобранной системы вентиляции, которая качественно обновляет воздух в помещении. Такое оборудование поддерживает оптимальный микроклимат, регулирует влажность и не охлаждает помещение зимой. Используя специальный рекуператор воздуха, можно расширить функциональность системы вентиляции, сократить расходы домовладельца на обогрев и коммунальные платежи.

Содержание статьи

Особенности и принцип работы

Под рекуперацией принято понимать процесс теплообмена, когда идущий с улицы холодный воздух нагревается тёплым потоком, который удаляется из квартиры. Используемые установки отличаются простотой конструкции, они надежны, позволяя предупредить быстрое охлаждение помещения в зимнее время года. Работают рекуператоры на электричестве, при этом современное оборудование отличается экономичностью, а расход энергии будет в разы меньше, чем возможная экономия на обогреве помещения.

Принцип работы рекуператора

 

Принцип работы таких устройств чрезвычайно прост. Внутри рекуператора холодный и теплый поток встречаются, но не смешиваются. При этом происходит активная передача тепла холодному воздуху с улицы, который может нагреваться на 3−5 градусов. В каждом конкретном случае эффективность таких устройств и их функциональные возможности будут различаться, в зависимости от выбранной конструкции, типа техники, наличия или отсутствия дополнительных вентиляторов с теплонагревающими элементами.

Основные типы конструкций

Изначально устройства для рекуперации тепла в системах вентиляции представляли собой простейшую технику, выполненную в виде небольшого ящика с тонкой перегородкой. Сегодня появились многочисленные разновидности, которые отличаются своим принципом работы, наличием или отсутствием дополнительных нагревающих элементов, способом формирования воздушных потоков и рядом других характеристик.

Основные типы рекуператоров:

  • Роторные.
  • Пластинчатые.
  • Канальные.
  • Трубчатые.
  • С отдельным теплоносителем.

Пластинчатый рекуператор

Устройства с пластинчатым теплообменником используют перекрестный ток потоков, которые, не смешиваясь, эффективно передают тепло, нагревая тем самым помещение. КПД у таких установок в зависимости от их размера может составлять 60−80%. Они отличаются минимальными потерями давления, удобны в подключении и использовании, имеют компактную конструкцию, что позволяет располагать его внутри стен дома.

Комбинированные рекуператоры могут иметь два пластинчатых теплообменника, где формируется перекрестный поток воздуха. К преимуществам оборудования этого типа относится высокий коэффициент полезного действия, удобство подключения и простота обслуживания. Единственный недостаток таких установок — это существенная потеря давления, что вынуждает использовать дополнительные вентиляторы и нагнетатели для воздушного потока.

Рекуператор трубчатого типа

Пластинчатые промышленные теплообменники рекуператоров противоточного типа отличаются простотой конструкции, они обеспечивают КПД на уровне 90%, позволяя предупредить охлаждение помещения и эффективно нагревая поступающий в дом воздух с улицы. К недостаткам оборудования противоточного пластинчатого типа относят сложную конструкцию, высокую стоимость, а также увеличенные габариты.

Противоточные трубчатые бытовые теплообменники обеспечивают максимально возможную эффективность, имеют КПД на уровне 95%. Используя такой рекуператор в системе вентиляции, необходимо дополнительно подключать нагнетатели воздуха, так как потери давления могут составить 40−50%. Также недостатком установок этого типа являются их увеличенные габариты и высокая стоимость оборудования.

Разновидности роторных рекуператоров

Рекуперативные теплообменники роторного типа обладают показателем КПД на уровне 75−85%, они рассчитаны на одну квартиру и имеют небольшое сопротивление потоку. Предлагаются такие установки по доступным ценам, отличаются компактными габаритами, их монтаж и последующее обслуживание не представляет какой-либо особой сложности.

Самостоятельное изготовление рекуператора

Сегодня в продаже можно найти различные модели изготовленных в заводских условиях системы рекуперации воздуха для частного дома, которые отличаются качеством сборки, имеют высокие показатели КПД, а их монтаж не представляет сложности. Однако высокая цена такого оборудования отрицательно сказывается на его популярности на российском рынке.

Изготовление рекуператора в домашних условиях

Поэтому многие отечественные домовладельцы самостоятельно изготавливают нагреватели, выполнить которые можно из подручных материалов с использованием простейших инструментов. Нужно лишь продумать тип конструкции, а также рассчитать мощность установки, которая должна подходить под показатели производительности всей системы вентиляции в доме.

Проще всего сделать своими руками рекуператор для частного дома пластинчатого типа, который отличается простотой конструкции и эффективностью. Можно найти многочисленные схемы выполнения такого оборудования, что существенно упрощает работу, одновременно имеется возможность точного расчёта мощности конкретной установки.

К преимуществам самодельных пластинчатых рекуператоров принято относить следующее:

  • Длительный срок эксплуатации.
  • Простота используемых материалов и функциональных элементов.
  • Надежность конструкции.
  • Полная автономность и отсутствие привязки к электроснабжению.
  • Высокий КПД.

К минусам таких нагревателей для системы вентиляции принято относить лишь вероятность образования наледи при сильных морозах, что отрицательно сказывается на эффективности установки, вплоть до полного прекращения нагрева поступающего с улицы воздуха. Чтобы решить такие проблемы с обледенением, необходимо дополнительно утеплять рекуператор или устанавливать его в теплом обогреваемом помещении.

Большой популярностью пользуются самодельные рекуператоры кассетного типа, которые эффективны и при этом полностью решают проблемы с появлением конденсата и обледенением при низких температурах. Выполнить такие нагреватели и их кассеты можно из целлюлозы, а корпус устройства изготавливается из жести или любого другого металла, хорошо защищенного от коррозии.

Необходимые компоненты и материалы

Перед тем как непосредственно приступать к изготовлению рекуператора, необходимо подготовить используемые инструменты и материалы. Для такой работы потребуется следующее:

  • Компьютерный вентилятор.
  • Четыре фланца.
  • Уголок.
  • Метизы.
  • Герметик.
  • Клей.
  • Фанера или металл для корпуса аппарата.
  • Минеральная вата для утепления.
  • Деревянные рейки для основания.
  • Алюминиевые листы для изготовления кассет.

Можно использовать уже готовые целлюлозные кассеты, которые выпускаются для фильтров автомобилей и кондиционеров. Их использование позволяет существенно упростить изготовление рекуператора, повышая его мощность и в последующем упрощая обслуживание самодельного оборудования.

Пример схемы сборки рекуператора

Подыскать в интернете простые в реализации схемы изготовления самодельных рекуператоров не составит труда. Также простейшие чертежи можно выполнить самостоятельно с учетом мощности оборудования и необходимой производительности. Выполнять такое устройство без схемы изготовления не следует, так как в последующем сложно правильно собрать всю систему, что отрицательно сказывается на надежности оборудования и его эффективности.

Сборка нагревателя

Сборка рекуператора не представляет особой сложности. Необходимо нарезать не менее 70 листов металла с размерами сторон от 200 до 300 мм. Подготавливаются деревянные рейки, размеры которых должны полностью соответствовать сторонам нарезанных листов металла. Древесину следует обработать олифой, что предупредит гниение и потерю прочности у внутренних элементов теплообменника. Подготовленные рейки приклеивают клеем с двух сторон металлических квадратов. Собрав все заготовки, можно приступать к следующему этапу работы.

Самодельный рекуператор

Чередовать собранные квадраты следует с поворотом в 90 градусов, что позволит обеспечить перпендикулярное расположение кассет внутри рекуператора, гарантируя тем самым максимальную эффективность нагрева воздушных потоков без их смешивания. Верхний квадрат, к которому не крепят рейки, приклеивается к нижнему с помощью специального металлического клея. Дополнительно для повышения прочности конструкции ее стягивают уголками и фиксируют саморезами или аналогичным крепежом. Щели следует обработать герметиком, после чего формируют фланцевые крепления.

Теплообменник приточного рекуператора готов. Осталось выполнить из металла или пиломатериалов корпус устройства, смонтировать внутри каркаса сотовую кассету. Устанавливать теплообменник необходимо таким образом, чтобы он упирался в рёбра, формируя визуально ромб, через который в последующем будет проходить холодный воздух с улицы и удаляемый нагретый поток из дома.

Если корпус самодельного рекуператора изготавливается из древесины, следует обработать пиломатериалы специальными пропитками, что предупредит их гниение и быстрый выход из строя оборудования. В процессе работы на теплообменнике будет образовываться конденсат, который стекает с металлических кассет, скапливаясь на дне корпуса. Следует предусмотреть небольшие отверстия для удаления влаги, которые располагаются на одном уровне с дном корпуса устройства.

На последнем этапе работы крепят к деревянному или металлическому корпусу четыре фланца, которые выполняют из полипропиленовых труб или аналогичных материалов. Их фиксируют с использованием соответствующих хомутов и фитингов, дополнительно промазывая герметиком, чтобы обеспечить максимально возможную герметичность изготовленного корпуса устройства.

Минеральная вата

Для повышения эффективности самодельного вентиляционного рекуператора его следует дополнительно обшить минеральной ватой, которая предупреждает теплопотери и образование конденсата. Последний часто появляется, если такое оборудование установлено на открытом воздухе или же в неотапливаемом помещении.

На входе установки можно смонтировать воздушные фильтры, которые обеспечивают первичную очистку воздуха от имеющихся загрязнений, тополиного пуха и различных аллергенов.

Использование рекуператора в системе вентиляции частного дома позволяет расширить функциональные возможности такого оборудования, предупреждая быстрое охлаждение комнат в зимнее время года, что экономит расходы домовладельца на оплату коммунальных услуг. Хозяева могут приобрести уже готовые обогреватели, которые отличаются компактными размерами, простотой монтажа и эффективностью. Также можно изготовить рекуператор своими руками, что позволит сократить расходы на обустройство инженерных коммуникаций в частном доме.

Промывка теплообменников своими руками

Промывка теплообменников — это залог надежности и эффективности их работы. Теплообменные аппараты, равно как любое инженерно-техническое оборудование, необходимо эксплуатировать не только с соблюдением технических условий, но и с проведением периодической чисткой теплообменника.

Вне зависимости от конструкционных модификаций функционирование теплообменного оборудования напрямую обусловлено качеством рабочей среды. Под воздействием высоких температур многочисленные соли, растворенные в воде, образуют на внутренних поверхностях теплообменных аппаратов нерастворимый осадок. Интенсивность формирования твердых известковых отложений определяется химическим составом воды.

Постепенное появление накипи вызывает:

  • Сужение параметров условного прохода;
  • Снижение интенсивности и равномерной проходимости рабочего потока;
  • Резкое падение эффективности передачи тепла.

Если своевременно промыть теплообменник, цена последующего планового технического обслуживания существенно сократится. Будет обеспечена максимально продолжительная эксплуатация, рациональное и экономичное использование энергоресурсов, предотвращены различные поломки в теплообменном оборудовании.

Метод и способ чистки теплообменников определяется инструкцией, основанной на принципе действия и конструкции рекуперативного устройства. Но основной алгоритм разборного способа всегда включает этапы демонтажа, очищения, финишной установки и требует применения специализированного оборудования для промывки теплообменников, купить которое зачастую необходимо для сокращения временных затрат и повышения эффективности процесса.

Если такое имеется под рукой, вооружившись дополнительно слесарным инструментом, жидкостью для промывки теплообменников и усердием, можно выполнить данную процедуру самостоятельно на месте эксплуатации.

Промывка теплообменника своими руками

Прежде чем приступить к непосредственному исполнению следует учесть, что промывка теплообменника своими руками – дело кропотливое, не терпящее поспешности и дилетантства, поэтому при отсутствии минимальных инженерных навыков наиболее рационально прибегнуть к услугам сервисных компаний.

Перед проведением профилактики теплообменного аппарата следует изначально вывести его из эксплуатации: перекрыть поступление среды, слить оставшиеся в устройстве остатки теплоносителя, демонтировать агрегат. При разборке настоятельно рекомендуется использовать фрикционные или пневматические ключи.

Непосредственно перед промывкой пластинчатого теплообменника, производится его визуальный осмотр, фиксируются обнаруженные дефекты и ширина сжатого комплекта пластин, вскрывается пломба (заводские изготовители и сервисные компании всегда производят пломбировку).

При раскрытии пакета пластин необходимо максимально соблюсти параллельное положение стационарной и подвижной плиты, соответственно резьба крепежных элементов должна быть предварительно очищена и смазана. Ослабление и выкручивание болтов начинается со средней пары, верхние и нижние болты также выворачиваются попарно, но диаметрально противоположно. После снятия болтов внешние плиты раздвигаются и производится извлечение пластин.

Пластины достаются аккуратно и только по отдельности. Если промывка пластинчатого теплообменника не проводилась на протяжении длительного периода, пластины и их уплотнения под воздействием высоких температур и давления могли затвердеть. В таком случае расщепление пластин производится с особой скрупулезностью, чтобы не повредить их конфигурацию и целостность.

Очистку пластин осуществляют без уплотнений и сразу после демонтажа, так как высыхание отложений повышает их твердость и удалить их будет еще сложнее. Жесткой волокнистой щеткой пластины предварительно очищаются и затем погружаются в раствор.

Жидкость для промывки теплообменников подбирается на основании характера загрязнения:

  • Для органических отложений можно банально использовать раствор лимонной и ортофосфорной кислоты;
  • Для неорганических и объемных отложений лучше использовать специализированные химические средства.

Время химической обработки зависит от выбранного реагента: в первом случае потребуется ориентировочно от трех до девяти часов, во втором случае чуть более часа.

После этого пластины споласкиваются в большом количестве горячей воды или струей, подаваемой под давлением. Просушка пластин может происходить естественно или с помощью тепловой пушки, единственное условие – следует избегать деформации и напряжений.

Высушенные пластины тщательно осматриваются и протираются сухой ветошью, при обнаружении поврежденных деталей следует заказать и установить новые. Если обнаружены повреждения и порывы уплотнений их также заменяют на новые с учетом маркировки и цветового кода.

Сборка теплообменного аппарата производится в обратном порядке. Пакет пластин набирается с учетом встречно-параллельно расположения рифлей. Собранный пакет прикрывается внешними пластинами и затягивается болтами. Затяжка начинается со средней пары и заканчивается поочередным закручиванием верхних и нижних фитингов.

Когда пакет стянут, следует перепроверить стяжку – профиль пластин и уплотнений должны организовывать единообразный рисунок, а ширина совпадать с первичными параметрами.

Промывка пластинчатых теплообменников паяных

Данные типы используются в бытовых системах и имеют целостную конструкцию, поэтому промывка теплообменников производится без их разборки. Если вы решили выполнить эту процедуру самостоятельно, то согласно инструкции вам потребуется бустер для промывки теплообменников, цена которого относительно небольшая. Механическая чистка и многочасовое замачивание в кислотных растворах не обеспечивают даже половинный эффект от его применения.

Бустер для промывки теплообменников – это фактически насос. Он обеспечивает закрытую и интенсивную циркуляцию раствора химических веществ, удаляющих накипь, по внутреннему контуру.

Если предстоит предсезонная промывка теплообменника, купить следует профессиональные реагенты: Detex, Master Boiler, Docker, так как это значительно уменьшит временные затраты на процедуру.

Скупой платит дважды

Несмотря на кажущуюся легкость процедуры, самостоятельно не всегда удается выполнить промывку теплообменных аппаратов с полным восстановление их энергоэффективности и функциональности. К тому же не стоит забывать, что промывка теплообменника газового котла сопряжена с диагностикой фильтрационных узлов и финишной наладкой электроники. А неудачно подобранная кислота для промывки теплообменников может вызвать химическую коррозию металлических деталей и разрушение резиновых уплотнителей.

Сервисное обслуживание теплообменных аппаратов позволяет:

  • Оперативно и качественно произвести промывку теплообменников;
  • Минимизировать риски, сопряженные с некорректной и аварийной работой устройств;
  • Упразднить возможность повреждения конструктивных элементов и сопряженных коммуникаций;
  • Подобрать наиболее эффективный метод очистки (гидродинамическая, механическая или химическая промывка теплообменников).

Каждая модель теплообменного оборудования рассчитана на определенную величину давления, сертифицированная установка для промывки теплообменников позволяет произвести очистку с абсолютным согласованием параметров и тем самым полностью исключить понижение динамической прочности аппарата.