Соединение последовательное светильников: Последовательное и параллельное соединение лампочек: схемы и примеры – схема подключения, параллельно или последовательно

Содержание

Как соединить светодиодные лампы последовательно или параллельно. Как подключить точечные светильники параллельно

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.


Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать

⚡️Как запитать последовательное соединение светодиодных ламп

Хочу предложить вариант освещения помещений с последовательным соединением нескольких светодиодных ламп. Предварительно нужно удалить из этих ламп их собственные драйверы. Затем, соединив все лампы последовательно, запитать их от общего источника стабилизированного тока.

Конечно, чтобы заменить параллельное соединение ламп последовательным, потребуется переделка проводки. Но в результате появятся новые возможности, недоступные при параллельном соединении.

Во-первых, можно будет одновременно регулировать их яркость. Во-вторых, реализовать “дежурное” освещение, при котором через лампы течёт очень маленький ток — такой, чтобы яркость освещения была достаточной для перемещения по комнате или квартире, но не мешала отдыхать.

В-третьих, в режиме максимальной яркости можно установить ток через лампы меньше того, который протекал через них при питании от собственных драйверов. Это увеличит срок службы светодиодов в лампах и компенсирует расходы на переделку проводки. Конечно, минусом этого предложения можно считать то, что при выходе из строя хоть одной лампы или самого блока питания погаснут все лампы.

Но после предлагаемого уменьшения тока на 10…20 % (что лишь незначительно снижает яркость свечения) они перестанут не только терять яркость в результате деградации светодиодов, но и выходить из строя до истечения обещанного изготовителем срока службы. Подключать блок питания решено через разъём, чтобы можно было оперативно отремонтировать его или заменить запасным.

В результате экспериментов было установлено, что плавная регулировка яркости от нуля до максимума совершенно не нужна. Вполне достаточно двух режимов: максимальной яркости для чтения и других занятий и неяркой подсветки для просмотра телепередач или подготовки ко сну. Все другие градации яркости освещения, скорее всего, не будут использованы. Поэтому было решено отказаться от плавной регулировки яркости, а режимы освещения переключать обычным двухклавишным выключателем.

По предлагаемому способу я выполнил освещение двух комнат. В них использованы разные блоки питания, поскольку применены неодинаковые по конструкции и параметрам светодиодные лампы. Для первой комнаты были приобретены шесть светодиодных ламп с рабочим напряжением 12 В и мощностью 3,5 Вт. Их разборка показала наличие драйвера. Чтобы определиться с параметрами блока питания, были измерены выходные напряжение и ток драйверов нескольких ламп. Они оказались равными приблизительно 6,6 В и 440 мА.

Понятно, что блок питания последовательно соединённых светодиодных узлов шести таких ламп должен обеспечивать стабилизированный ток 380…400 мА при напряжении 36…40 В. Для второй комнаты я приобрёл десять светодиодных светильников, предназначенных для установки в гипсокартонные потолки. У каждого из них имелся свой выносной блок питания с напряжением 12 В и током 160 мА. В этом случае общий блок питания должен был обеспечить стабилизированный ток 130…150 мА при напряжении 120…125 В.

Схема блока питания для светодиодных ламп в первой комнате представлена на рис. 1. В нём применен электронный трансформатор для 12-вольтных галогенных ламп. Ограничитель тока собран по простой и широко известной схеме на линейном интегральном стабилизаторе напряжения LM317T. Преимущество такого ограничителя — простота, отсутствие помех и небольшое число используемых деталей. Но есть и недостаток.

При входном напряжении более 37В он боится короткого замыкания нагрузки, потому что всё выходное напряжение выпрямителя при этом оказывается приложенным между входом и выходом микросхемы-стабилизатора и выводит её из строя. Сетевое напряжение поступает на электронный трансформатор U1 при замыкании выключателя SA1.2. Если выключатель SA1.1 при этом разомкнут, симистор VS1 остаётся закрытым, обмотка реле К1 обесточенной, а его контакты К1.1 разомкнутыми.

Ток светодиодных ламп ограничен резистором R6 на уровне, значительно меньшем порога ограничения узла на микросхеме DA1. Это режим пониженной яркости. При замыкании выключателя SA1.1 (если SA1.2 уже замкнут) симистор VS1 открывается, реле К1 срабатывает, шунтируя контактами К1.1 резистор R6.

Через светодиодные лампы теперь течёт ток, ограниченный микросхемой DA1. Это режим максимальной яркости. Симистор применён для того, чтобы не возникала ситуация, когда после размыкания выключателя SA1.2 свет гаснет, но обмотка реле К1 остаётся под током, если выключатель SA1.1 забыли разомкнуть.

Цепь C2R2 защищает симистор от ложных открываний под действием импульсных помех, возникающих в сети при включении и выключении различных электроприборов. Номиналы её элементов придётся, возможно, подбирать экспериментально.

Сопротивление резистора R2 может лежать в пределах от 47 до 470 Ом, а ёмкость конденсатора С2 — от 0,01 до 1 мкФ. Конечно, можно обойтись и вообще без симистора, но для этого придётся изменить подключение проводов к выключателю SA1. Такой вариант схемы блока питания представлен на рис. 2.

На первый взгляд, кажется, что вариант с симистором вообще не нужен, но это не совсем так. Если при установке блока питания, собранного по схеме рис. 2, перепутать провода, идущие от выключателя SA1 к сети и к плавкой вставке FU2, работа устройства покажется нормальной. Однако при замкнутом выключателе SA1.1 и разомкнутом SA1.2 обмотка реле К1 останется под током. И выяснится это лишь по излишнему потреблению электроэнергии или по нагреву корпуса реле при выключенном освещении.

Электронный трансформатор для 12-вольтных галогенных ламп было решено применить для питания светодиодов, поскольку у меня не оказалось обычного трансформатора достаточной мощности и небольших габаритов. Суммарная мощность, потребляемая светодиодными лампами, в рассматриваемом случае невелика, около 20 Вт, поэтому подойдёт даже 40-ваттный электронный трансформатор. Но переделывать его из-за маленьких габаритов будет не очень удобно.

Лучше взять электронный трансформатор мощностью 80 Вт, оснащённый трансформаторами большего размера, наматывать на которые дополнительные витки будет легче. В таком электронном трансформаторе установлены довольно мощные транзисторы MJE13005, MJE13007 или даже MJE13009, которым дополнительный теплоотвод не потребуется.

Прежде всего, в электронном трансформаторе следует заменить цепь обратной связи по току цепью обратной связи по напряжению, чтобы он мог работать и при небольшой нагрузке, когда светодиодные лампы светят с пониженной яркостью.

Цепь обратной связи по току представляет собой просто провод, пропущенный в окно магнитопровода трансформатора Т1, выполненного на ферритовом кольце диаметром около 5 мм. Отпаяйте один конец этого провода от печатной платы, вытащите его из окна магнитопровода и снова припаяйте на прежнее место.

Чтобы создать цепь обратной связи по напряжению, возьмите отрезок обычного монтажного провода и одним его концом намотайте два витка на магнитопроводе трансформатора Т1, а другим концом — два витка на магнитопроводе трансформатора Т2. Свободные концы провода соедините одно, двухваттным резистором Roc сопротивлением 6,8 Ом.

Затем включите электронный трансформатор в сеть и измерьте напряжение на его выходе без нагрузки. Если напряжение отсутствует, измените направление намотки дополнительных витков на одном из двух трансформаторов.

Параллельно выходу не показанного на схемах рис. 1 и рис. 2 высоковольтного выпрямительного моста электронного трансформатора желательно подключить в нужной полярности оксидный конденсатор ёмкостью 10…20мкФ на 400 В. Очень подробно подобная переделка электронного трансформатора описана в статье (1).

После неё он не только становится способным работать при очень малой нагрузке, но и перестаёт бояться короткого замыкания выхода — это несомненное достоинство. Вторая необходимая переделка электронного трансформатора — удалить с его трансформатора Т2 имеющуюся вторичную обмотку, дающую выходное напряжение 12 В. После этого намотать новую обмотку с отводом от середины (на рис. 1 и рис. 2 — обмотки IIа и IIб) на то напряжение, которое требуется в изготавливаемом устройстве.

В рассматриваемом случае на выходе двухполупериодного выпрямителя на диодах VD1 и VD2 нужно получить напряжение около 40 В. Это значит, что в каждой из обмоток IIа и IIб, должно быть в 40/12=3,33 раза больше витков, чем в удалённой вторичной обмотке. Новые вторичные обмотки удобно наматывать одновременно сложенным вдвое и слегка свитым изолированным монтажным проводом. При этом дополнительная изоляция между первичной и вторичными обмотками не потребуется.

Сечение провода вторичных обмоток “по меди” должно быть не менее 0,12…0,2 мм². Конец обмотки IIа соедините с началом обмотки IIб — это будет средняя точка. Если же в свободном пространстве окна магнитопровода две вторичные обмотки не умещаются, намотайте одну с тем числом витков, что нужны в одной из двух, а выпрямитель соберите по мостовой схеме.

Это увеличит число диодов в нём до четырёх и немного увеличит падение напряжения на диодах.Применять в блоке питания электронный трансформатор вовсе не обязательно. При наличии стального магнитопровода подходящих размеров можно намотать обычный понижающий трансформатор и питать выпрямитель на диодах VD1 и VD2 от него.

Диоды FR106 можно заменить другими высокочастотными выпрямительными диодами с допустимым обратным напряжением не менее 100 В и максимальным выпрямленным током не менее 1 А. Например, диодами FR107, FR157, FR207, FR307 или диодами Шотки SR106, SR110, SR306, SR310, SR506, SR510. Подойдут и отечественные диоды КД213 с любым буквенным индексом.

Оксидные конденсаторы — К50-35 или подобные. Поскольку конденсатор С4 (СЗ на рис. 2) работает на частоте 50…100 кГц, он должен иметь низкое эквивалентное последовательное сопротивление. Если прибора для измерения этого параметра нет, через 20…30 мин работы блока питания под полной нагрузкой проверьте температуру этого конденсатора. Если он заметно нагрелся, его лучше заменить другим.

Интегральный стабилизатор напряжения LM317T, который можно заменить отечественным КР142ЕН12А, установите на теплоотвод с площадью охлаждающей поверхности 50…100см². Замена симистора МАС97А6 — MAZ00607, однако резистор R1 придётся подобрать, чтобы обеспечить надёжное открывание симистора.

Главное требование к реле К1 — его контакты должны выдерживать напряжение и ток цепочки светодиодных ламп. Исходя из рабочего тока обмотки реле, выбирают ёмкость конденсатора С1 (приблизительно 1 мкФ на каждые 60 мА тока).

Это должен быть конденсатор К73-17 на указанное на схеме постоянное напряжение или аналогичный импортный. В случае применения вместо указанного на схеме реле SRD-12VDC-SL-C реле SRD-24VDC-SL-C, обмотка которого рассчитана на вдвое большее напряжение и, соответственно, вдвое меньший ток, ёмкость конденсатора С1 должна быть уменьшена приблизительно во столько же раз по сравнению с его ёмкостью, указанной на схеме. Аналогично следует поступить, применяя другие реле.

Вместо выпрямительного моста КЦ407А подойдёт любой из КЦ402Б— КЦ402Г, КЦ402Ж, КЦ402И, КЦ405А- КЦ405Г, КЦ405Ж, КЦ405И. Можно собрать мост и из четырёх отдельных диодов с допустимым выпрямленным током не менее 100 мА и обратным напряжением не менее 300 В.

Собрав блок питания, подключите к его выходу вместо светодиодных ламп резистор сопротивлением 65…80 Ом и мощностью 10…20 Вт через миллиамперметр. Включив устройство в сеть, замкните выключатели SA1.1 и SA1.2. Измерьте ток, текущий через нагрузочный резистор.

Его значение зависит от сопротивления резистора R5 (R3 на рис. 2). Возможно, сопротивление этого резистора придётся подобрать и даже составить его из нескольких резисторов. Как уже было сказано, для увеличения срока службы светодиодов ток должен быть на 10… 15 % меньше, чем при их питании от имевшихся в лампах драйверов.

Я установил ток 380 мА. Минимальную яркость освещения (при разомкнутом выключателе SА 1.1) установите подборкой сопротивления резистора R6 (R4 на рис. 2). После 20…30 мин работы блока в режиме максимальной яркости желательно проверить температуру теплоотвода стабилизатора DA1. Если он сильно разогрет, значит, напряжение между входом и выходом стабилизатора слишком велико.

Чтобы интегральный стабилизатор не перегревался, разность напряжений на его входе и выходе при максимальном напряжении в сети (-252 В) не должна превышать 5…6 В, иначе потребуется применить более эффективный теплоотвод. Напряжение на входе стабилизатора при необходимости можно изменить, отмотав или домотав равное число витков обмоток IIа и IIб трансформатора Т2.

При налаживании ограничителя тока и его окончательном монтаже не забывайте, что при напряжении не входе микросхемы более 37В короткие замыкания её выхода недопустимы.

Схема блока питания для второй комнаты представлена на рис. 3. Поскольку здесь цепочке светодиодных ламп требуется сравнительно высокое напряжение, электронный трансформатор неприменим. Для гашения излишка сетевого напряжения пришлось использовать конденсаторы. Это значительно упростило блок. Яркость освещения было решено изменять, коммутируя гасящие конденсаторы С1—СЗ.

Для предотвращения выхода из строя светодиодных ламп при пробое гасящих конденсаторов в блоке применена защита, описанная в статье [2]. В рассматриваемом случае узел защиты состоит из неуправляемых симисторов VS1—VS4, тринистора VS5, диода VD5 и резистора R4. Чтобы не повторяться, его описание здесь не приводится.

Когда замкнуты выключатели SA1.1 и SA1.2, все три гасящих конденсатора соединены параллельно и лампы светят с максимальной яркостью. При замкнутом выключателе SA1.1 и разомкнутом SA1.2 яркость несколько меньше, поскольку в цепь питания ламп включены только конденсаторы С1 и СЗ. Ещё меньше яркость станет, если разомкнуть выключатель SA1.1 и замкнуть выключатель SA1.2, оставив подключенным только конденсатор С2.

Однако вышесказанное не учитывает влияния на протекающий через светодиодные лампы ток узла на ОУ DA1.1 и составном транзисторе VT1VT2. Пока этот ток невелик, падение напряжения на резисторе R10 меньше напряжения, установленного на неинвертирующем входе ОУ подстроечным резистором R8. В этой ситуации напряжение на выходе ОУ близко к напряжению его питания, стабилизированного стабилитроном VD6. Поэтому составной транзистор VD1VD2 полностью открыт и на ток в цепи светодиодных ламп влияния не оказывает.

С увеличением тока (например, в результате повышения напряжения в сети или переключения гасящих конденсаторов) падение напряжения на резисторе R10 растёт. Когда оно приближается к напряжению на неинвертирующем входе ОУ, напряжение на выходе ОУ падает, в результате чего составной транзистор VT1VT2 частично закрывается, не давая току через лампы и резистор R10 превысить порог ограничения.

Рекомендуется установить подстроечным резистором R8 такой порог, при котором ток через светодиодные лампы немного меньше того, что протекал бы при замкнутых выключателях SA1.1 и SA1.2 в отсутствие ограничения и на 10…20 % меньше тока, допустимого для установленных в лампах светодиодов.

В других положениях выключателей ток через лампы и яркость их свечения будут меньше, а рассеиваемая на составном транзисторе VT1VT2 мощность — незначительной. Применённый ограничитель тока, в отличие от собранного на микросхеме LM317T, не боится коротких замыканий нагрузки. Естественно, он может быть применён и в предыдущих вариантах блока питания.

Трудоёмкость изготовления этого варианта блока питания намного меньше, чем описанных выше блоков, поскольку в нём отсутствует релейный узел управления яркостью и требующий переделки электронный трансформатор.

Ёмкость конденсаторов C1—С3 лучше подобрать экспериментально. Я остановился на суммарной ёмкости 4 мкФ и применил импортные плёночные конденсаторы на постоянное напряжение 630 В. Диоды 1N4007 можно выпаять из неисправного балласта энергосберегающей лампы.

Стабилитрон Д814Г допустимо заменить отечественными Д814Б, Д814В либо импортными 1N4739A— 1N4742A. Подстроечный резистор R8 желательно применить многооборотный, например СП5-1А. Транзистор MJE13003 необходимо установить на теплоотвод с площадью охлаждающей поверхности 50…100 см2.

Он может быть заменён на MJE13005, MJE13007 или MJE13009. Все эти транзисторы можно найти в балластах энергосберегающих ламп. В качестве их замены подойдут отечественные высоковольтные транзисторы КТ812А, КТ812В, КТ826Б. КТ828А, КТ828Б, КТ838А, КТ840Б, КТ846В, КТ859А и им подобные.

Поскольку все детали блока питания с гасящими конденсаторами гальванически связаны с сетью, все замены и усовершенствования в нём следует делать только после полного отключения от сети. Кроме того, при всех работах необходимо соблюдать меры электробезопасности.

Налаживание блока начните, подключив к его выходу вместо ламп резистор сопротивлением 800…850 Ом мощностью 10…20 Вт и включённый с ним последовательно микроамперметр. Установите движок подстроечного резистора R8 в положение максимального сопротивления и замкните выключатели SA1.1 и SA1.2. Перемещая движок подстроечного резистора R8. установите порог ограничения тока нагрузки. Для увеличения срока службы ламп я ограничился током 130 мА.

Минимальную яркость освещения установите подборкой ёмкости конденсатора С2. Естественно, нужно помнить, что при этом общая ёмкость конденсаторов С1—СЗ должна оставаться примерно равной расчётному значению. Иными словами, после уменьшения ёмкости конденсатора С2 суммарную ёмкость конденсаторов С1 и СЗ нужно увеличить приблизительно на столько же.
Чтобы считать налаживание законченным, проверьте нагрев теплоотвода транзистора VT2 за 20…30 мин работы блока в режиме максимальной яркости.

Если он излишне разогрелся, значит, суммарная ёмкость гасящих конденсаторов великовата и её необходимо уменьшить. Можно, не изменяя ёмкость, увеличить размер теплоотвода транзистора VT2. Но в этом случае существует опасность превысить допустимую для него мощность, рассеиваемую с теплоотводом.

Если ограничитель тока на ОУ и транзисторах будет применён в предыдущем варианте блока питания, необходимо уменьшить сопротивление гасящего резистора R5 до 2,5…3 кОм. Транзисторы VT1 и VT2 могут быть рассчитаны на меньшее напряжение.

Но чтобы ограничитель не боялся замыканий выхода, допустимое напряжение коллектор—эмиттер транзисторов VT 1 и VT2 должно быть больше, чем напряжение на выходе выпрямителя. Исходя из того что блок питания с гасящим конденсатором представляет собой практически источник тока, его можно использовать для питания светодиодных ламп и без ограничителя тока. Схема такого блока показана на рис. 4.

По своим параметрам он соответствует предыдущему блоку (см. рис. 3), но гораздо проще его. Но есть недостаток — в режиме максимальной яркости при изменении напряжения в сети ток через светодиоды также меняется. Если при уменьшении напряжения ничего страшного со светодиодами не произойдёт, то при его увеличении ток может превысить допустимое для них значение.

Тем не менее такое питание светодиодов возможно, если выбирать ёмкость гасящего конденсатора исходя из повышенного напряжения в сети. В этом случае при номинальном напряжении в сети ток и яркость свечения светодиодов будут ниже, но зато при повышении напряжения ток не превысит допустимого значения. Впрочем, питание светодиодов током, меньшим максимального, есть главное условие их продолжительной безотказной работы. А небольшое снижение яркости можно компенсировать большим числом ламп.

При первом включении в сеть питать блок с гасящими конденсаторами нужно через лабораторный автотрансформатор (ЛАТР), на котором предварительно установить минимальное напряжение. К блоку следует подключить через миллиамперметр именно те светодиодные лампы, с которыми он будет работать в дальнейшем.

Использовать вместо ламп нагрузочный резистор здесь нежелательно. Зависимость текущего через него тока от приложенного напряжения очень сильно отличается от такой же зависимости у светодиодных ламп. Поэтому полученные результаты окажутся неверными. Чтобы не повредить светодиодные лампы, повышайте подаваемое на блок питания напряжение постепенно, начиная с минимального, и следите по миллиамперметру за текущим через лампы током.

Когда ток достигнет значения, принятого за максимально допустимое, прекратите увеличивать напряжение и измерьте его на выходе ЛАТР. Если оно меньше 253 В (максимального, согласно стандарту, напряжения в сети), ёмкость гасящего конденсатора или конденсаторов, если их включено несколько, можно увеличить, если больше — её следует уменьшить.

Например, в моём случае в блоке, собранном по схеме рис. 4, очень удачно подошёл конденсатор К78-22 5в ёмкостью 3,6 мкФ с номинальным напряжением 450В из люминесцентного светильника. При напряжении в сети 230В ток светодиодов был равен 130 мА — тому же значению, на которое был настроен ограничитель тока в предыдущем варианте. При повышении напряжения до 253В ток возрос всего до 160 мА. Подробнее о типах конденсаторов, наиболее подходящих для работы в качестве гасящих, можно прочитать в источниках [2] и [3].

Разделять один конденсатор ёмкостью 3,6 мкФ на два конденсатора ёмкостью 1 мкФ и 2,6 мкФ я не стал, справедливо рассудив, что для того, чтобы получить ёмкость 2,6 мкФ, потребуется опять соединять несколько конденсаторов. Поэтому было решено применить последовательное соединение гасящих конденсаторов, которое изображено на схеме, а не параллельное, как в предыдущем случае.

Уровень пониженной яркости остался вполне достаточным, хотя лампы в этом случае питаются через два соединённых последовательно конденсатора, общая ёмкость которых 0,78 мкФ, а не 1 мкФ, как в предыдущем случае. Понятно, что при питании светодиодных ламп от блока питания без ограничителя тока при колебаниях напряжения в электросети изменится яркость их свечения. Но, во-первых, при небольших колебаниях напряжения изменение яркости субъективно незаметно.

Во-вторых, то же самое происходит и с лампами накаливания, и с люминесцентными лампами, а мы этого и не замечаем. В-третьих, большие колебания напряжения в электросети, которые могут вызвать заметное изменение яркости ламп, довольно редкое явление. Во всяком случае, за шесть месяцев эксплуатации блока питания никаких колебаний яркости не наблюдалось. Естественно, речь идёт о городской квартире. В сельской местности или в гараже перепады напряжения происходят постоянно по причине включения и выключения сварочных аппаратов, обогревателей, станков и других мощных потребителей.

Хочу отметить, что если в выключателе имеется подсветка клавиш, то изображённый на рис. 4 вариант блока литания обеспечит ещё один режим освещения — “дежурный”. Оказывается, светодиодным лампам достаточно тока в несколько миллиампер, чтобы они светились. В моём случае ток поступал через два индикаторных светодиода, установленных в выключателе. Хотя он был всего 3,6 мА, этого оказалось достаточно, чтобы все десять ламп заметно светились.

Их свечение заметно даже днём, а ночью позволяет спокойно ходить по комнате, не натыкаясь на мебель, и выполнять различные простые действия, например, найти пульт от телевизора или сотовый телефон. Но особенно полезно такое освещение в коридоре, кухне, туалетной и ванной комнатах. Ночью не приходится включать яркое освещение, которое после темноты вредно для глаз, а после его выключения человек на несколько секунд “слепнет”. Кроме того, включённый ночью яркий свет обязательно разбудит и других членов семьи.

Впрочем, если кому-то эта подсветка будет мешать, можно подключить параллельно блоку питания конденсатор, подобрав его ёмкость в пределах 0,1…0,47 мкФ. И, наоборот, если в выключателе нет светодиодов, а требуется дежурное освещение, подключите параллельно контактам выключателя конденсатор или резистор мощностью 1…2Вт, подобрав их экспериментально.

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания
При последовательном соединении мощность лампы накаливания

Школа электрика. Последовательное соединение ламп накаливания

При последовательном соединении мощность лампы накаливания

Как видим на рисунке выше обе лампочки HL1 и HL2 включены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если поступает входное переменное напряжение 220В на провода L и N, то засветятся обе лампы, но гореть они будут в пол силы, точнее в половину накала. Так как сопротивление нитей ламп накаливания рассчитано на напряжение 220В, и когда они включены в соответствии со схемой, одна за другой, то за счет добавления сопротивления нити накала первой лампы, общее сопротивление возрастает, а значит, согласно закону Ома, напряжение уменьшится в два раза. Поэтому пр на каждой лампе напряжение 220В будет делиться пополам, и составит около 110В.

А если соединить три лампы?

При последовательном соединении мощность лампы накаливания

В данном случае напряжение на каждой лампе будет уже 73 Вольт, так как будет делиться уже между тремя потребителями.

Так же хорошим практическим примером являются простые новогодние гирлянды. Здесь из кучи миниатюрных лампочек с низким питанием создается одна общая гирлянда на напряжение 220В.

При последовательном соединении мощность лампы накаливания

Выводы: Недостатками этого типа подключения в области электрики является то, что если сгорит хоть одна из лампочек, гореть не будут все, так как нарушается целостность электрической цепи. И второй существенный недостаток это слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в электрике практически не используется.

При последовательном соединении мощность лампы накаливанияКак известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.При последовательном соединении мощность лампы накаливания

    две лампы вкрученные в патроны
    два провода питания выходящие из патронов

При последовательном соединении мощность лампы накаливанияЧто нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.При последовательном соединении мощность лампы накаливания

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.При последовательном соединении мощность лампы накаливания

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При последовательном соединении мощность лампы накаливания

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания

Что это дает нам в практическом смысле при реализации данных схем?

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.При последовательном соединении мощность лампы накаливания

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.При последовательном соединении мощность лампы накаливания

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.При последовательном соединении мощность лампы накаливания

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.При последовательном соединении мощность лампы накаливания

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.При последовательном соединении мощность лампы накаливания

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.При последовательном соединении мощность лампы накаливания

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.При последовательном соединении мощность лампы накаливания

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.При последовательном соединении мощность лампы накаливания

В то время как большей, практически потухнет. Все как и было описано выше.

Где же можно в быту, применить такую казалось бы не практичную схему?

Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.При последовательном соединении мощность лампы накаливания

Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.При последовательном соединении мощность лампы накаливания

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.При последовательном соединении мощность лампы накаливания

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

При последовательном соединении мощность лампы накаливанияДопустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?При последовательном соединении мощность лампы накаливания

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.

При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).При последовательном соединении мощность лампы накаливания

А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.При последовательном соединении мощность лампы накаливания

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.При последовательном соединении мощность лампы накаливания

Что-то подобное зачастую применяется в инкубаторах.

Теперь давайте рассмотрим параллельную схему соединения.При последовательном соединении мощность лампы накаливания

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

При последовательном соединении мощность лампы накаливания

При последовательном соединении мощность лампы накаливания

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.При последовательном соединении мощность лампы накаливания

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.При последовательном соединении мощность лампы накаливания

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.При последовательном соединении мощность лампы накаливания

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.При последовательном соединении мощность лампы накаливания

И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.При последовательном соединении мощность лампы накаливания

Напряжение на них подается одновременно и всегда составляет номинальные 220В.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при паралл ельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

При последовательном соединении мощность лампы накаливания

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

При последовательном соединении мощность лампы накаливания

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения — паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

При последовательном соединении мощность лампы накаливания

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
  • P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
  • P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
  • P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при паралл ельном соединение

При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

При последовательном соединении мощность лампы накаливания

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1234 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

полное описание как подключить c дросселем и стартером, соединить последовательно или параллельно, с ЭПРА

Время на чтение: 5 минут

АА


Люминесцентные лампы давно и надежно служат нам повсюду. Они светят, когда мы работаем, отдыхаем, учимся, совершаем покупки и занимаемся спортом. Мало кто задумывается, что зажечь свет этой лампы непросто. Для этого требуется специально собранная схема из пусковых и поддерживающих горение устройств.

Конструкция люминесцентной лампы, со времени своего изобретения в 19 веке, практически не претерпела изменений. Изменялись и совершенствовались приборы и схемы для их подключения в сеть. В настоящее время актуальны и надежно работают электромагнитные и электронные устройства для люминесцентных светильников. У каждого из них есть свои достоинства и недостатки.

Варианты соединения светильника дневного света

Люминесцентная лампа (дневного света) представляет собой герметичный сосуд наполненный газом. С двух сторон в него впаяны электроды с вольфрамовыми нитями. Свечение газа под воздействием электричества и позволяет получить освещение.

фото2фото2Чтобы газ в колбе начал светиться, на электроды подается и кратковременно поддерживается высокое напряжение.

Вольфрамовые нити разогревают газ, и он начинает светиться. Когда газ разгорится и начнет источать свет, напряжение спадает и поддерживается в так называемом, тлеющем режиме.

Для запуска и поддержания свечения в люминесцентных лампах были разработаны несколько схем подключения к электрической сети:

  1. С использованием классического электромагнитного балласта (ЭмПРА) – одна лампа и один дроссель.
  2. Две трубки и два дросселя.
  3. Подключения двух ламп от одного дросселя.
  4. Электронный балласт.
  5. Используя умножитель напряжения.

Использование электромагнитного балласта (ЭмПРА)

Стандартная схема с использованием электромагнитного балласта была придумана в 1934 году американцами, и в 1938 уже повсеместно использовалась в США. Она проста и включает в себя помимо лампы дроссель, стартер и конденсатор.

Одна лампа и один дроссель

Дроссель представляет собой индуктивное сопротивление и может накапливать ЭДС самоиндукции. Стартер — это небольшая неоновая лампочка, имеющая биметаллический контакт и конденсатор. Конденсатор стартера служит для подавления радиопомех, а параллельный дросселю для коррекции мощности.

После включения в сеть ток течет через дроссель на спираль лампы, потом через стартер на вторую спираль. Дроссель начинает накапливать электрический заряд. По схеме вначале течет слабый ток, ограниченный сопротивлением стартера. Контакты стартера нагреваются и замыкаются. Ток в схеме резко возрастает, но его безопасную величину обеспечивает дроссель.

Поэтому дроссель и называют – пускорегулирующий аппарат. Большой ток позволяет спиралям разогреть газ в колбе. В это время, контакты стартера остывают и размыкаются, через стартер ток уже не течет. Но дроссель успел накопить энергию и уже отдает ее на спирали лампы. Она начинает светиться. Дроссель, отдав накопленный заряд, в дальнейшем выступает как сопротивление. Поддерживает только тлеющий разряд, позволяя лампе гореть. Стартер уже выключен из схемы и не работает до следующего пуска.

Процесс пуска занимает доли секунды, но может незаметно для глаз, повторится несколько раз.

Достоинства и недостатки

Схема обладает рядом достоинств:

  • Дешевые и доступные комплектующие.
  • Достаточно проста.
  • Надежна.

По сравнению с современным электронным, дроссельное устройство имеет весомые недостатки:

  • Избыточный вес.
  • довольно продолжительное время запуска.
  • Небольшую надежность при низкой температуре.
  • Большее потребление энергии.
  • Шумный дроссель.
  • Нестабильный световой поток.

Две трубки и два дросселя

Применение в одном светильнике двух пар дросселей и ламп ведет к утяжелению и увеличению конструкции. Каждая из пар, имеет свой стартер. Мощность дросселя и лампы в этом случае совпадает, стартер применяется на 220 вольт.

Две схемы с использованием электромагнитного балласта работают в таком случае параллельно.

Достоинством этого варианта является его надежность. Выход из строя одной из веток не влияет на работу другой. Светильник будет работать, хотя бы и наполовину мощности.

Главный недостаток – очень громоздкая конструкция.

В остальном, имеет такие же плюсы и минусы, как и все ЭмПРА.

Включение двух ламп от одного дросселя

Дроссель является самой дорогостоящей деталью люминесцентного светильника. В целях экономии, иногда используется схема подключения двух ламп от одного дросселя.

Две лампы от одного дросселя можно запитать двумя способами:

  1. Последовательно.
  2. Параллельно.

Последовательное соединение двух ламп

фото3фото3Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

Конструктивные:

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.

Эксплуатационные:

  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Для схемы с параллельным соединением, следует выбирать стартеры, рассчитанные на рабочее напряжение от 110 вольт.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Стартеры при такой сборке следует устанавливать на 220 вольт.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Электронный балласт

Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.

фото 4фото 4При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.

Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.

Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.

Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.

Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:

  1. Напряжение поступает на выпрямитель.
  2. Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
  3. Далее напряжение регулируется тиристорными ключами.
  4. Впоследствии один канал фильтруется дросселем, другой конденсатором.
  5. И по двум проводам напряжение поступает на пару контактов лампы.
  6. Другая пара контактов лампы замкнута через конденсатор.

Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.

Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.

В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:

  • К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
  • Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
  • QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.

Электронные приборы имеют массу достоинств, из которых можно выделить следующие:

  • небольшой вес и малую величину устройства;
  • быстрое и сберегающее люминесцентную лампу, плавное включение;
  • отсутствует видимое глазу мерцание света;
  • большой коэффициент мощности, примерно 0,95;
  • прибор не греется;
  • экономия электроэнергии в размере 20%;
  • высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
  • большой срок службы люминесцентов;
  • отсутствие высоких требований к температуре окружающей среды;
  • способность автоматической подстройки к параметрам колбы;
  • отсутствие шумов во время работы;
  • возможность плавной регулировки светового потока.

Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

При покупке электронного балансового устройства не следует слишком экономить. Зачастую дешевые приборы оказываются всего лишь умножителями напряжения. Они не берегут лампы и опасны для жизни.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Предыдущая

ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп

Следующая

ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп

Основные схемы подключения ламп | Полезные статьи

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформаторРисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

 

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартерРисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартерРисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

 

Способы подключения ламп

Рисунок 4. Последовательное подключение лампРисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

 

Рисунок 5. Параллельное подключение лампРисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

 

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).