Подключение радиаторов отопления: способы и схемы
Чтобы в доме было тепло, важно правильно разработать схему отопления. Одна из составляющих ее эффективности — подключение радиаторов отопления. Неважно чугунные, алюминиевые, биметаллические или стальные радиаторы вы собрались ставить, важно выбрать правильный способ их подключения.
Способ подключения радиатора влияет на его теплоотдачу
Содержание статьи
- 1 Виды систем отопления
- 1.1 Однотрубные
- 1.2 Двухтрубная разводка
- 2 Где ставить радиаторы
- 3 Схемы подключения радиаторов
- 3.1 Радиаторы с нижним подключением
- 3.2 Батареи отопления с боковым подключением
- 3.2.1 Вариант №1. Диагональное подключение
- 3.2.2 Вариант №2. Одностороннее
- 3.2.3 Вариант №3. Нижнее или седельное подключение
Виды систем отопления
Количество тепла, которое будет излучать радиатор отопления, не в последнюю очередь зависит от вида системы отопления и выбранного типа подключения. Чтобы выбрать оптимальный вариант, надо сначала разобраться с тем, какие именно системы отопления бывают и чем они отличаются.
Однотрубные
Однотрубная система отопления — наиболее экономичный вариант с точки зрения затрат при монтаже. Потому именно такой тип разводки предпочитают в многоэтажных домах, хотя и в частных такая система далеко не редкость. При такой схеме радиаторы включены в магистраль последовательно и теплоноситель проходит сначала через один отопительный пробор, затем поступает на вход второго и так далее. Выход последнего радиатора подключается ко входу котла отопления или к стояку в многоэтажках.
Пример однотрубной системыНедостаток такого способа разводки — невозможность регулировки теплоотдачи радиаторов. Установив регулятор на любом из радиаторов, вы будете регулировать всю остальную систему. Второй значительный недостаток — разная температура теплоносителя на различных радиаторов. Те, которые находятся ближе к котлу, греются очень хорошо, которые дальше — становятся все холоднее. Это — следствие последовательного подключения радиаторов отопления.
Двухтрубная разводка
Двухтрубная система отопления отличается тем, что в ней имеется две нитки трубопровода — подающий и обратный. Каждый радиатор подключен к обеим, то есть получается, что все радиаторы подключены к системе параллельно. Это хорошо тем, что на вход каждого из них поступает теплоноситель одной температуры. Второй положительный момент — на каждый из радиаторов можно установить терморегулятор и с его помощью изменять количество тепла, которое он выделяет.
Двухтрубная системаНедостаток такой системы — количество труб при разводке системы больше почти в два раза. Зато систему легко можно сбалансировать.
Подробнее о системах отопления частного дома читайте тут.
Где ставить радиаторы
Традиционно радиаторы отопления ставят под окнами и это не случайно. Восходящий поток теплого воздуха отсекает холодный, который поступает от окон. Кроме того теплый воздух обогревает стекла, не давая образовываться на них конденсату. Только для этого необходимо чтобы радиатор занимал не менее 70% ширины оконного проема. Только так окно не будет запотевать. Поэтому, При выборе мощности радиаторов, подбирайте ее так, чтобы ширина всей батареи отопления была не менее заданной величины.
Как расположить радиатор под окномКроме того необходимо правильно выбрать высоту радиатора и место для его размещения под окном. Его надо разместить так, чтобы расстояние до пола было в районе 8-12 см. Если опустить ниже, неудобно будет убирать, если поднять выше — ногам будет холодно. Также регламентировано расстояние до подоконника — оно должно быть 10-12 см. В этом случает теплый воздух свободно обогнет преграду — подоконник — и поднимется вдоль оконного стекла.
И последнее расстояние, которое надо выдержать при подключении радиаторов отопления — расстояние до стены. Оно должно быть 3-5 см. В таком случае вдоль задней стенки радиатора будут подниматься восходящие потоки теплого воздуха, скорость обогрева помещения улучшится.
Как монтировать и подключать радиаторы отопления своими руками читайте тут.
Схемы подключения радиаторов
Насколько хорошо будут греться радиаторы зависит от того, как в них подавать теплоноситель. Есть более и менее эффективные варианты.
Радиаторы с нижним подключением
Все радиаторы отопления имеют два типа подключения — боковое и нижнее. С нижним подключением никаких разночтений быть не может. Есть всего два патрубка — входной и выходной. Соответственно, с одной стороны в радиатор подается теплоноситель, с другой отводится.
Нижнее подключение радиаторов отопления при однотрубной и двухтрубной системе отопленияКонкретно, куда подключать подающий, а куда обратный написано в инструкции по монтажу, которая обязательно должна быть в наличии.
Батареи отопления с боковым подключением
При боковом подключении вариантов намного больше: тут подающий и обратный трубопровод можно подсоединить в два патрубка, соответственно, вариантов четыре.
Вариант №1.
Диагональное подключениеТакое подключение радиаторов отопления считают наиболее эффективным, его берут за эталон и именно так испытывают производители свои отопительные приборы и данные в паспорте по тепловой мощности — для такой подводки. Все остальные типы подключения менее эффективно отдают тепло.
Диагональная схема подключения радиаторов отопления при двухтрубной и однотрубной системеВсе потому, что при диагональном подключении батарей горячий теплоноситель подается на верхний вход с одной стороны, проходит через весь радиатор и выходит с противоположной, нижней стороны.
Вариант №2. Одностороннее
Как понятно из названия, подключаются трубопроводы с одной стороны — подача сверху, обратка — снизу. Этот вариант удобен, когда стояк проходит сбоку от отопительного прибора, что часто бывает в квартирах, потому именно такой тип подключения обычно и преобладает. Когда теплоноситель подводится снизу, такая схема используется нечасто — не очень удобно располагать трубы.
Боковое подключение для двухтрубной и однотрубной системыПри таком подключении радиаторов эффективность нагрева только чуть ниже — на 2 %. Но это только если секций в радиаторах немного — не более 10. При более длинной батарее ее дальний от край будет плохо греться или вообще останется холодным. В панельных радиаторах для решения проблемы ставят удлинители потока — трубки, которые доводят теплоноситель чуть дальше середины. Такие же устройства можно устанавливать в алюминиевые или биметаллические радиаторы, улучшая при этом теплоотдачу.
Вариант №3. Нижнее или седельное подключение
Из всех вариантов седельное подключение радиаторов отопления самое малоэффективное. Потери составляют примерно 12-14%. Но данный вариант самый незаметный — трубы обычно укладываются по полу или под ним и такой способ наиболее оптимальный с точки зрения эстетики. А чтобы потери не влияли на температуру в помещении, можно радиатор взять чуть более мощный чем требуется.
Седельное подключение радиаторов отопленияСхемы подключения радиаторов отопления и их эффективность
Радиаторные системы отопления бывают двух видов: однотрубными и двухтрубными.
Однотрубная требует меньшего количества труб, но ее главный недостаток: разная температура теплоносителя на входе радиаторов. Получается, что тот, который ближе к котлу, греется сильнее, тот который дальше — слабее. В сетях большой протяженности может случиться так, что на последний радиатор заходит уже совсем холодный теплоноситель. Это часто можно наблюдать на первых этажах многоэтажек. Там обычно используется однотрубная система, а теплоноситель подается с верхних этажей вниз.
На рисунке представлена горизонтальная схема последовательного подключения радиаторов отопления, называется она еще «однотрубная» и «ленинградка». Для возможности ремонта с обеих сторон отопительного прибора установлены запорные краны. Закрыв их, вы можете снимать, менять и ремонтировать радиатор без останова всей системы. Подобная схема часто применяется при подключении батарей отопления в частном доме. Она просто монтируется, а при небольшой протяженности теплоотдача каждого радиатора регулируется при помощи игольчатых кранов, которыми можно изменять интенсивность потока теплоносителя.
Однотрубную систему называют еще «последовательное соединение радиаторов отопления»Двухтрубная схема — параллельное подключение радиаторов к подаче. На вход каждого из них поступает теплоноситель одинаковой температуры, а остывшая вода собирается в другой трубопровод. И хотя расход труб (и денег) тут при монтаже больше, но сбалансировать (отрегулировать) теплоотдачу каждого отопительного прибора намного проще.
Подробнее о видах систем и разводки теплоносителя читайте тут.
Двухтрубная система — параллельное подключение отопительных приборовВарианты подключения радиаторов отопления
В любой из систем радиаторы можно подключить несколькими способами. Основных существуют три.
Диагональное
В этом случае чаще всего подача теплоносителя идет сверху, «обратка» подключается снизу. Теоретически это считается самой лучшей схемой подключения радиаторов. Расчетные потери тепла на больше 2-5%. Получается, что горячая вода более равномерно распространяется по всем секциям. В паспортных данных к каждой секции указана тепловая мощность. Так вот, при испытаниях используют именно эту схему.
Диагональное подключение — одно из самых эффективных (которое слева)Иногда можно встретить другую картину — когда подача идет внизу, а обратный трубопровод подключен сверху. Хоть это и диагональное подключение, но при таком поступлении теплоносителя расчетные потери будут 20-25%. В некоторых ситуациях эта схема неплохо себя показывает, и если у вас при таком диагональном подключении вся поверхность прибора прогрета более-менее нормально, то для вашей системы это работает.
Но практика часто опровергает теорию. И далеко не всегда даже правильная диагональная схема подключения радиаторов отопления оказывается самым лучшим вариантом. В однотрубных системах с принудительной циркуляцией часто нижнее подключение работает лучше.
Нижнее
Согласно теории потери тепла при таком варианте большие — до 15-20%. Но при достаточно большом напоре, создаваемом циркуляционным насосом, вся поверхность радиатора снизу доверху оказывается хорошо нагретой. А все потому, что возникают вихревые потоки. Эта часть теплотехники (распределение и поведение вихревых потоков) до сих пор недостаточно исследована, предсказать поведение этих самых вихревых потоков пока невозможно. Но факт остается фактом: в некоторых случаях нижнее подключение радиаторов отопления — самое эффективное.
Нижнее подключение для двухтрубных и однотрубных системСхема популярна еще и потому, что при скрытой прокладке трубы в полу практически незаметна. Но вариантов нижнего подключения тоже два. Седельное — это когда трубы подключаются с противоположных сторон. Используется обычно на секционных радиаторах. И именно нижнее подключение — когда вход и выход отопительной панели находятся внизу на небольшом расстоянии друг от друга. Такой вариант подключения применяется для панельных радиаторов.
Боковое или одностороннее
Чаще всего такой тип подключения радиаторов отопления можно увидеть в многоэтажных домах с вертикальной разводкой. Это когда стояки опускаются сверху вниз, проходя через все этажи. На каждом из этажей подключены радиаторы. Чаще в этом случае система однотрубная (стояк один), но бывают и двухтрубные подключения (рядом два стояка).
Боковое или одностороннее подключение при двухтрубной или однотрубной системеЭтот вид подключения радиаторов отопления средний по потерям. Они составлять могут 5-10%. Используется часто из-за минимального расхода труб при подключении и неплохой, в принципе, эффективности.
Где установить
Со схемами подключения радиаторов отопления разобрались, но важно еще правильно выбрать место их расположения. Традиционно они размещаются под окнами. Это оправданно с точки зрения теплотехники. В комнатах идет самая большая потеря тепла именно через окна. Установив под ними радиаторы, мы создаем тепловую завесу, которая предотвращает утечку тепла из помещения. Аналогично будут действовать радиаторы расположенные вблизи от входных дверей.
Правила установки радиатора под окномНо устанавливать радиатор тоже нужно правильно, выдерживая рекомендованные расстояния от пола и подоконника. При определении высоты отопительных приборов нужно исходить не только из требуемой мощности, но и из того, как «встанет» батарея такого размера.
Кроме типа подключения радиаторов нужно выбрать место установкиКроме того стоит учитывать, что закрывая радиаторы декоративными экранами, пряча их в нишах или под полками, мы также снижаем количество поступающего от них тепла.
Лучшая схема подключения радиаторов отопления и устранение проблем
Все эти потери, которые могут возникнуть на отопительных приборах, принимать в расчет нужно только на больших системах. Подключение батарей отопления в частном доме в системе с принудительной циркуляцией (с насосом) может быть любое. На количестве отдаваемого тепла это если и отразится, то совершенно незначительно. Выбирайте тот вид подключения радиаторов отопления, который наиболее удобен в вашем случае. Он и будет лучшим. Важно правильно рассчитать количество секций, а снижение теплоотдачи на 7% или 15% вы при этом не почувствуете: все расчеты берутся с запасом, округления — в большую сторону. Так что особо переживать нет причин.
Волноваться приходится, когда «батареи не греют», или нагреваются неравномерно. Но тут нужно в каждом случае рассматривать конкретную ситуацию: подключение, тип системы и разводки. Но есть несколько стандартных ситуаций, в которых причины тоже часто стандартны:
Вообще ситуаций и причин множество. Но чаще всего, если раньше температура на приборе была нормальной, а вдруг стал он холодным, причина кроется в засоренной трубе или вентиле, в заросшей трубе. Проверьте все, почистьте. Должно заработать. Если результата нет — вызывайте спеца. Но он, скорее всего, будет повторять ваши манипуляции.
Причина того, что плохо греются батареи обычно в том, что забились краны или заросли трубыСлабо греющие радиаторы — это одна проблема. Не менее дискомфортно себя чувствуешь, когда в помещении слишком жарко. И это часто ощущают на себе те люди, которые поставили металлопластиковые окна. Сразу становится очень тепло, временами, при умеренных температурах «за бортом», невыносимо жарко. Приходится или часто открывать окна, или закрывать вентили на подаче. Комфортным такое существование назвать сложно. Но все можно исправить.
Отрегулировать (понизить или повысить) температуру, а не закрыть полностью, можно несколькими способами. Есть игольчатые вентили, которые позволяют изменять подачу теплоносителя вручную. Вы частично перекрываете поток, тепла выделяется меньше. Похолодало — кран открыли больше — тепла стало выделяться больше. Есть автоматические устройства — терморегуляторы на батареи (радиаторы), их называют «термокран», «термостат», «регулятор». От этого суть не меняется. Поворотом головки этого термостата, вы выставляете ту температуру, которую хотите поддерживать в комнате. И устройство само регулирует поток теплоносителя. Точность поддержания температуры плюс-минус 1oC.
Итоги
Потери теплоотдачи радиаторов могут оказать влияние при неправильно рассчитанной системе или при большой ее протяженности. Если расчет верен, и система имеет определенный запас мощности, то подключайте радиаторы так, как вам удобнее. Гораздо важнее выдержать правильный уклон: та сторона радиатора, на которой установлен кран «Маевского» должна быть чуточку выше, чем ее противоположный конец.
404 | Водяное отопление с рекуперацией тепла
404 | Нагрев воды с рекуперацией тепла | ООО «ХотСпот Энерджи»
|
Управление температурным режимом батареи
Температурные эффекты
Предельные значения температуры
Действие всех батарей зависит от электрохимического процесса, будь то зарядка или разрядка, и мы знаем, что эти химические реакции некоторым образом зависят от температуры. Номинальная производительность батареи обычно указывается для рабочих температур где-то в диапазоне от +20°C до +30°C, однако фактическая производительность может существенно отличаться от этой, если батарея работает при более высоких или низких температурах.
Закон Аррениуса говорит нам, что скорость, с которой протекает химическая реакция, увеличивается экспоненциально с повышением температуры (см. Срок службы батареи). Это позволяет извлекать из батареи больше мгновенной мощности при более высоких температурах. В то же время более высокие температуры улучшают подвижность электронов или ионов, снижая внутреннее сопротивление клетки и увеличивая ее емкость.
В верхней части шкалы высокие температуры могут также инициировать нежелательные или необратимые химические реакции и/или потерю электролита, что может привести к необратимому повреждению или полному отказу батареи. Это, в свою очередь, устанавливает верхний предел рабочей температуры для батареи.
В нижней части шкалы электролит может замерзнуть, что ограничивает низкотемпературные характеристики. Но намного выше точки замерзания электролита характеристики батареи начинают ухудшаться, так как скорость химической реакции снижается. Несмотря на то, что батарея может работать при температурах до -20°C или -30°C, производительность при 0°C и ниже может серьезно ухудшиться.
Также обратите внимание, что нижний предел рабочей температуры батареи может зависеть от степени ее заряда. Например, в свинцово-кислотном аккумуляторе, когда аккумулятор разряжается, сернокислотный электролит все больше разбавляется водой, и соответственно повышается его температура замерзания.
Таким образом, батарею необходимо поддерживать в ограниченном диапазоне рабочих температур, чтобы можно было оптимизировать как емкость заряда, так и срок службы. Таким образом, практической системе может потребоваться как нагрев, так и охлаждение, чтобы поддерживать ее не только в рабочих пределах, указанных производителем батареи, но и в более ограниченном диапазоне для достижения оптимальной производительности.
Тем не менее, управление температурным режимом заключается не только в соблюдении этих ограничений. Аккумулятор подвержен нескольким одновременным внутренним и внешним тепловым воздействиям, которые необходимо держать под контролем.
Источники и поглотители тепла
Электрическое отопление (Джоулево отопление)
При работе любой батареи выделяется тепло из-за I 2 R потери при протекании тока через внутреннее сопротивление батареи независимо от того, заряжается она или разряжается. Это также известно как джоулев нагрев. В случае разряда общая энергия в системе фиксирована, и повышение температуры будет ограничено доступной энергией. Однако это все еще может вызывать очень высокие локальные температуры даже в маломощных батареях. Такой автоматический предел не применяется во время зарядки, поскольку ничто не мешает пользователю продолжать подавать электроэнергию в аккумулятор после того, как он полностью заряжен. Это может быть очень рискованная ситуация.
Разработчики аккумуляторов стараются поддерживать внутреннее сопротивление элементов на как можно более низком уровне, чтобы свести к минимуму тепловые потери или выделение тепла внутри аккумулятора, но даже при таком низком сопротивлении элементов, как 1 мОм, нагрев может быть значительным. Примеры см. в разделе Эффекты внутреннего импеданса.
Термохимический нагрев и охлаждение
В дополнение к джоулеву нагреву, химические реакции, протекающие в клетках, могут быть экзотермическими, добавляя выделяемое тепло, или они могут быть эндотермическими, поглощая тепло в процессе химического действия. Таким образом, перегрев, скорее всего, будет проблемой экзотермических реакций, в которых химическая реакция усиливает тепло, выделяемое текущим потоком, а не эндотермических реакций, где химическое действие противодействует этому. Во вторичных батареях, поскольку химические реакции обратимы, химические реакции, которые являются экзотермическими во время зарядки, будут эндотермическими во время разрядки, и наоборот. Так что от проблемы никуда не деться. В большинстве ситуаций Джоулев нагрев превысит эндотермический охлаждающий эффект, поэтому все же необходимо принять меры предосторожности.
Свинцово-кислотные батареи экзотермичны во время зарядки, а батареи VRLA склонны к тепловому выходу из строя (см. ниже). Ячейки NiMH также экзотермичны во время зарядки, и по мере того, как они приближаются к полной зарядке, температура ячейки может резко возрасти. Следовательно, зарядные устройства для NiMH элементов должны быть спроектированы таким образом, чтобы обнаруживать повышение температуры и отключать зарядное устройство, чтобы предотвратить повреждение элементов. Напротив, батареи на основе никеля с щелочными электролитами (NiCads) и литиевые батареи являются эндотермическими во время зарядки. Тем не менее, тепловой разгон все еще возможен во время зарядки этих аккумуляторов, если они подвержены перезарядке.
Термохимия литиевых элементов несколько сложнее и зависит от состояния интеркаляции ионов лития в кристаллическую решетку. Во время зарядки реакция сначала является эндотермической, а затем переходит в слегка экзотермическую в течение большей части цикла зарядки. Во время разряда реакция обратная, сначала экзотермическая, затем переходит в слегка эндотермическую на протяжении большей части цикла разряда. Как и в других химических процессах, джоулев тепловой эффект больше, чем термохимический эффект, пока ячейки остаются в своих проектных пределах.
Внешние тепловые эффекты
Тепловое состояние батареи также зависит от окружающей среды. Если его температура выше температуры окружающей среды, он будет терять тепло посредством теплопроводности, конвекции и излучения. Если температура окружающей среды выше, батарея будет нагреваться от окружающей среды. Когда температура окружающей среды очень высока, система управления температурным режимом должна работать очень усердно, чтобы поддерживать температуру под контролем. Отдельный элемент может очень хорошо работать при комнатной температуре сам по себе, но если он является частью аккумуляторной батареи, окруженной аналогичными элементами, выделяющими тепло, даже если он несет одинаковую нагрузку, он может значительно превысить свои температурные пределы.
Температура — ускоритель
Конечным результатом термоэлектрических и термохимических эффектов, возможно усиленных условиями окружающей среды, обычно является повышение температуры, и, как мы отмечали выше, это вызывает экспоненциальное увеличение скорости, с которой протекает химическая реакция. Мы также знаем, что при чрезмерном повышении температуры может произойти много неприятных вещей
- Активные химические вещества расширяются, вызывая набухание клетки
- Механическая деформация компонентов ячейки может привести к короткому замыканию или обрыву цепи
- Могут происходить необратимые химические реакции, вызывающие необратимое снижение количества активных химических веществ и, следовательно, емкости элемента
- Продолжительная работа при высокой температуре может привести к растрескиванию пластиковых частей ячейки
- Повышение температуры ускоряет химическую реакцию, увеличивая температуру еще больше, что может привести к тепловому разгону
- Могут выделяться газы
- Внутри ячейки повышается давление
- Ячейка может в конечном итоге разорваться или взорваться
- Могут выделяться токсичные или легковоспламеняющиеся химические вещества
- Судебные иски последуют
Теплоемкость — Конфликт
По иронии судьбы инженеры-аккумуляторщики стремятся впихнуть все больше и больше энергии во все меньшие объемы, а инженеру-прикладнику все труднее получить ее снова. Большая сила новых аккумуляторов, к сожалению, также является источником их самой большой слабости.
Теплоемкость объекта определяет его способность поглощать тепло. Проще говоря, для данного количества тепла, чем больше и тяжелее объект, тем меньше будет повышение температуры, вызванное теплом.
В течение многих лет свинцово-кислотные батареи были одним из немногих источников питания, доступных для приложений высокой мощности. Из-за их большого размера и веса повышение температуры во время работы не было серьезной проблемой. Но в поисках более компактных и легких аккумуляторов с более высокой мощностью и плотностью энергии неизбежным последствием является снижение тепловой емкости аккумулятора. Это, в свою очередь, означает, что для данной выходной мощности повышение температуры будет выше.
(Это предполагает аналогичный внутренний импеданс и аналогичные термохимические свойства, что может не обязательно иметь место. ) В результате рассеивание тепла является серьезной инженерной проблемой для батарей с высокой плотностью энергии, используемых в приложениях высокой мощности. Разработчики ячеек разработали инновационные методы конструирования ячеек, чтобы отводить тепло от ячейки. Разработчики аккумуляторных батарей должны найти не менее инновационные решения для отвода тепла от аккумуляторной батареи.
Тепловые характеристики аккумуляторов электромобилей и гибридных автомобилей
Аналогичные конфликты возникают с батареями электромобилей и гибридных автомобилей. Аккумулятор электромобиля большой, с хорошими возможностями отвода тепла за счет конвекции и теплопроводности, а также с низким повышением температуры из-за его высокой теплоемкости. С другой стороны, батарея HEV с меньшим количеством элементов, но каждый из которых несет более высокие токи, должна выдерживать ту же мощность, что и батарея EV, но менее чем в одну десятую размера. При более низкой теплоемкости и более низких свойствах рассеивания тепла это означает, что батарея HEV будет подвергаться гораздо большему повышению температуры.
Принимая во внимание необходимость поддерживать работу элементов в пределах допустимого диапазона температур (см. «Срок службы» в разделе «Неисправности литиевых батарей»), батарея электромобиля, скорее всего, столкнется с проблемами, связанными с поддержанием ее тепла в нижней части диапазона температур, в то время как аккумулятор HEV с большей вероятностью будет иметь проблемы с перегревом в условиях высокой температуры, даже если они оба рассеивают одинаковое количество тепла.
В случае электромобиля при очень низких температурах окружающей среды самонагрев (I 2 R нагрев) протекающим током во время работы, скорее всего, будет недостаточным для повышения температуры до желаемых рабочих уровней из-за габаритов батареи и для повышения температуры могут потребоваться внешние нагреватели. Это может быть обеспечено за счет отвлечения части емкости батареи на отопление. С другой стороны, то же I 2 R тепловыделение в аккумуляторной батарее HEV, работающей в условиях высокой температуры, может привести к тепловому разгону, и необходимо обеспечить принудительное охлаждение.
См. также технические характеристики электромобилей, гибридных автомобилей и гибридных электромобилей в разделе «Тяговые батареи»
.
Термический разгон
Рабочая температура, достигаемая в аккумуляторе, является результатом температуры окружающей среды, дополненной теплом, выделяемым аккумулятором. Если батарея подвергается чрезмерным токам, возникает возможность теплового разгона, что приводит к катастрофическому разрушению батареи. Это происходит, когда скорость выделения тепла внутри батареи превышает ее способность рассеивания тепла. Есть несколько условий, которые могут привести к этому:
- Первоначально тепловые потери I 2 R зарядного тока, протекающего через элемент, нагревают электролит, но сопротивление электролита уменьшается с температурой, так что это, в свою очередь, приводит к тому, что более высокий ток приводит к еще большему повышению температуры, усиление реакции до тех пор, пока не будет достигнуто состояние бегства.
- Во время зарядки зарядный ток вызывает экзотермическую химическую реакцию химических веществ в ячейке, которая усиливает выделение тепла зарядным током.
- Или во время разрядки тепло, выделяемое экзотермическим химическим действием, генерирующим ток, усиливает резистивный нагрев из-за протекания тока внутри элемента.
- Слишком высокая температура окружающей среды.
- Недостаточное охлаждение
Если не принять каких-либо защитных мер, последствиями теплового разгона могут стать расплавление элемента или повышение давления, что может привести к взрыву или пожару, в зависимости от химического состава и конструкции элемента. Подробнее см. в разделе «Неисправности литиевых батарей».
Система терморегулирования должна держать все эти факторы под контролем.
Примечание
Термический разгон может произойти во время зарядки свинцово-кислотных аккумуляторов с регулируемым клапаном, когда выделение газа подавляется, а рекомбинация способствует повышению температуры. Это не относится к залитым свинцово-кислотным аккумуляторам, поскольку электролит выкипает.
Регуляторы температуры
Отопление
Рабочие условия при низких температурах относительно легко переносятся. В простейшем случае в батарее обычно достаточно энергии для питания самонагревающихся элементов, которые постепенно доводят батарею до более эффективной рабочей температуры, когда нагреватели можно отключить. В некоторых случаях достаточно поддерживать цикл зарядки аккумулятора, когда он не используется. В более сложных случаях, например, с высокотемпературными батареями, такими как батарея Zebra, работающая при температуре, значительно превышающей нормальную температуру окружающей среды, может потребоваться некоторый внешний нагрев, чтобы довести батарею до рабочей температуры при запуске, и может потребоваться специальная теплоизоляция для поддержания температуру как можно дольше после выключения.
Охлаждение
Для аккумуляторов малой мощности обычных цепей защиты достаточно, чтобы поддерживать аккумулятор в рекомендуемых пределах рабочей температуры. Однако цепи высокой мощности требуют особого внимания к управлению тепловым режимом.
Цели проекта
- Защита от перегрева — 905:30 В большинстве случаев это просто включает в себя контроль температуры и прерывание пути тока, если температура достигает температурных пределов, с использованием обычных схем защиты. Хотя это предотвратит повреждение батареи от перегрева, тем не менее, она может отключить батарею до того, как будет достигнут предел допустимой нагрузки по току, что серьезно ограничит ее производительность.
- Рассеивание избыточного тепла —
Отвод тепла от батареи позволяет проводить более высокие токи до того, как будут достигнуты пределы температуры. Тепло выходит из батареи за счет конвекции, теплопроводности и излучения, и задача разработчика упаковки состоит в том, чтобы максимизировать эти естественные потоки, поддерживая низкую температуру окружающей среды, обеспечивая прочный, хороший путь отвода тепла от батареи (используя металлические охлаждающие стержни или пластины между ячеек, если это необходимо), максимально увеличивая площадь поверхности, обеспечивая хороший естественный поток воздуха через упаковку или вокруг нее и устанавливая ее на проводящую поверхность. - Равномерное распределение тепла —
- Минимальная добавка к весу —
Для приложений с очень высокой мощностью, таких как тяговые батареи, используемые в электромобилях и гибридных автомобилях, естественного охлаждения может быть недостаточно для поддержания безопасной рабочей температуры, и может потребоваться принудительное охлаждение. Это должно быть последним средством, так как это усложняет конструкцию батареи, увеличивает вес батареи и потребляет энергию. Однако, если принудительное охлаждение неизбежно, первым выбором обычно является принудительное воздушное охлаждение с использованием вентилятора или вентиляторов. Это относительно просто и недорого, но теплоемкость теплоносителя, воздуха, который предназначен для отвода тепла, относительно низка, что ограничивает его эффективность. В худшем случае может потребоваться жидкостное охлаждение. 905:30 Для очень высоких скоростей охлаждения требуются рабочие жидкости с более высокой теплоемкостью. Вода обычно является первым выбором, потому что она недорогая, но можно использовать и другие жидкости, такие как этиленгликоль (антифриз), которые имеют лучшую теплоемкость. Вес хладагента, насосов для его циркуляции, охлаждающих рубашек вокруг ячеек, трубопроводов и коллекторов для переноса и распределения хладагента, а также радиатора или теплообменника для его охлаждения — все это значительно увеличивает общий вес, сложность и стоимость.
Несмотря на то, что тепловой расчет батареи может быть более чем достаточным для рассеивания общего тепла, выделяемого батареей, внутри аккумуляторной батареи все еще могут быть локальные точки перегрева, температура которых может превышать указанные пределы. Это может быть проблемой с ячейками в середине многоэлементной упаковки, которые будут окружены теплыми или горячими ячейками по сравнению с внешними ячейками в упаковке, обращенными к более прохладной среде.
Перепад температуры в аккумуляторной батарее может серьезно повлиять на срок службы батареи. Согласно закону Аррениуса, при повышении температуры на каждые 10°С скорость химической реакции увеличивается примерно вдвое. Это создает несбалансированную нагрузку на элементы батареи, а также усугубляет любой возрастной износ элементов. См. также «Взаимодействия между ячейками» и «Балансировка ячеек».
Разделение ячеек во избежание этой проблемы увеличивает объем упаковки. Для выявления потенциальных проблемных зон может потребоваться тепловизионное изображение.
Пассивное рассеяние можно еще больше улучшить, установив ячейки в блок из теплопроводного материала, который действует как теплоотвод. Теплопередачу от ячеек можно максимизировать, если для этой цели использовать материал с фазовым переходом (PCM), поскольку он также поглощает скрытую теплоту фазового перехода при переходе из твердого состояния в жидкое. В жидком состоянии также вступает в действие конвекция, увеличивающая потенциал для теплового потока и выравнивания температуры по всей аккумуляторной батарее. Для этого применения доступны графитовые губчатые материалы с высокой проводимостью, насыщенные воском, который поглощает дополнительное тепло, когда температура достигает точки плавления.