При включении выключателя загорается лампочка какое это явление: горение электрической лампы это какое физическое явление

6. Какие из перечисленных ниже явлений можно отнести к электрическим? Физика. 7 класс. Перышкин А.В. Тема 1. Задание №6. – Рамблер/класс

6. Какие из перечисленных ниже явлений можно отнести к электрическим? Физика. 7 класс. Перышкин А.В. Тема 1. Задание №6. – Рамблер/класс

Интересные вопросы

Школа

Подскажите, как бороться с грубым отношением одноклассников к моему ребенку?

Новости

Поделитесь, сколько вы потратили на подготовку ребенка к учебному году?

Школа

Объясните, это правда, что родители теперь будут информироваться о снижении успеваемости в школе?

Школа

Когда в 2018 году намечено проведение основного периода ЕГЭ?

Новости

Будет ли как-то улучшаться система проверки и организации итоговых сочинений?

Вузы

Подскажите, почему закрыли прием в Московский институт телевидения и радиовещания «Останкино»?

Даров. Как ответить, чего то не могу понять…

а)   потертая о шерсть пластмассовая расческа притя­гивает волосы;
б)   сверкает молния;
в)   при включении выключателя загорается лам­почка;
г)   магнит притягивает к себе железные предметы.
 
 

ответы

Приветик) Ну ответ простой тебе достался, это — А, б, в

ваш ответ

Можно ввести 4000 cимволов

отправить

дежурный

Нажимая кнопку «отправить», вы принимаете условия  пользовательского соглашения

похожие темы

Экскурсии

Мякишев Г.Я.

Досуг

Химия

похожие вопросы 5

ГДЗ Тема 21 Физика 7-9 класс А.В.Перышкин Задание №474 В каком случае жидкость имеет большую плотность?

Привет, есть варианты, как ответить на вопрос???
На рисунке изображен деревянный брусок, плавающий в двух разных жидкостях.

В (Подробнее…)

ГДЗФизикаПерышкин А.В.Школа7 класс

ГДЗ Тема 21 Физика 7-9 класс А.В.Перышкин Задание №475 В обоих случаях поплавок плавает. В какую жидкость он погружается глубже?

Привет. Выручайте с ответом по физике…
Поплавок со свинцовым грузилом внизу опускают
сначала в воду, потом в масло. В обоих (Подробнее…)

ГДЗФизикаПерышкин А.В.Школа7 класс

ГДЗ Тема 21 Физика 7-9 класс А.В.Перышкин Задание №476 Изобразите силы, действующие на тело.

Привет всем! Нужен ваш совет, как отвечать…
Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости. (Подробнее…)

ГДЗФизикаПерышкин А.В.Школа7 класс

Это правда, что будут сокращать иностранные языки в школах?

 Хочется узнать, когда собираются сократить иностранные языки в школе? Какой в итоге оставят? (Подробнее…)

ШколаНовостиИностранные языки

11. Выпишите слово, в котором на месте пропуска пишется буква Е. Русский язык ЕГЭ-2017 Цыбулько И. П. ГДЗ. Вариант 12.

11.
Выпишите слово, в котором на месте пропуска пишется буква Е.
произнос., шь (Подробнее…)

ГДЗЕГЭРусский языкЦыбулько И.П.

Почему мигает выключенная энергосберегающая лампочка?

Многие люди уже давно заменили обычные лампы накаливания на энергосберегающие, и некоторые из них столкнулись с проблемой мигания лампочки при выключенном свете.

С чем связано это неприятное явление и какие электромонтажные работы проводить в связи с этим, разберёмся в нашей статье.

ЭНЕРГОСБЕРЕГАЮЩИЕ ЛАМПОЧКИ ИМЕЮТ НЕМАЛО ПЛЮСОВ, НО МИГАНИЕ ПРИ ВЫКЛЮЧЕНИИ ЯВЛЯЕТСЯ ИХ «ФИРМЕННЫМ» МИНУСОМ

Почему мигает энергосберегающая лампочка при выключенном свете?


Подобный феномен встречается в помещениях, где установлены выключатели со светодиодной подсветкой. При выключении света светодиод загорается и указывает ночью путь к выключателю. Это очень удобно для пользователей, но не слишком вписывается в схему работы энергосберегающей лампочки – при функционировании с таким светодиодным выключателем лампочки начинают мигать, что особенно заметно в тёмное время суток. Засыпать под такую безмолвную «дискотеку» понравится далеко не каждому.

В отличие от ламп накаливания, люминесцентные и светодиодные лампы работают от постоянного источника питания. И на первый взгляд это может показаться странным – ведь на лампу в люстре подаётся переменное напряжение в 220 В, а выпрямителей для создания постоянного напряжения в патронах и люстрах нет. Однако этот выпрямитель находится внутри любой современной лампы.

СТРОЕНИЕ ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПОЧКИ

Энергосберегающие лампочки имеют электронную плату, находящуюся между цоколем и трубкой. Эти платы называются электронными балластами, обеспечивающими работу прибора.

На вход диодного моста (выпрямителя) подаётся переменное напряжение, а на выходе мы получаем уже постоянное напряжение. Для сглаживания пульсаций напряжения в лампу устанавливается сглаживающий конденсатор, он-то и является причиной, по которой мигает выключенная лампочка. Впрочем, если говорить точнее, конденсатор является лишь одной из составляющих причины мигания лампочки. Дело в том, что в выключателях с подсветкой в выключенном положении протекает электрический ток, который служит питанием для светодиода. И движется он по схеме «сеть-подсветка-люстра-сеть». Этот ток имеет незначительную величину (около сотой части ампера) и никак не влияет на счётчик.

Этот самый ток, питающий светодиод, протекая через люстру, заряжает конденсатор в электросхеме. Как только конденсатор получает заряд тока, достаточный для запуска, происходит активизация схемы, а, следовательно – вспышка энергосберегающей лампочки. После этого конденсатор тут же разряжается, лампочка гаснет, и цикл начинается заново.

ПОДСВЕТКА ВЫКЛЮЧАТЕЛЯ – ПРИЧИНА МИГАНИЯ ЛАМПОЧКИ ПРИ ВЫКЛЮЧЕННОМ СВЕТЕ

Самой большой проблемой мигания лампочки является вовсе не дискомфорт для пользователя, а быстрая выработка ресурса лампочки – её хватает на 1-2 месяца, после чего прибор можно смело выкидывать. А ведь стоимость энергосберегающей лампы не так мала, чтобы менять её раз в пару месяцев.

Производители энергосберегающих лампочек, знакомые с данной проблемой, могут делать на упаковке приписки вроде таких: «Нельзя использовать с клавишными выключателями с подсветкой, фотоэлементами, регуляторами яркости, диммерами, таймерами и пр.», однако это не является обязательной информацией.

Как устранить проблему мигания лампочки?


Есть несколько способов сделать так, чтобы энергосберегающая лампочка не мигала.

Убираем подсветку

Самым очевидным и простым решением будет отключение индикатора на выключателе. Это позволит избавиться от проблемы без дополнительных затрат.

  1. Вскройте крышку выключателя
  2. Отключите или перекусите провода, идущие к подсветке

Не перепутайте провода подсветки с силовыми проводами!

Теперь при отключённом свете ток, подзаряжающий конденсатор, не будет протекать, а лампа перестанет мигать.

ОТКЛЮЧИТЕ ПОДСВЕТКУ КЛАВИШИ, И ЛАМПОЧКА В ЛЮСТРЕ ПЕРЕСТАНЕТ МИГАТЬ

Заменяем выключатель

Выключатель с негорящей подсветкой может показаться кому-то не слишком привлекательным, так как он будет выглядеть как сломанный. Вы можете заменить все нужные выключатели на обычные, без светодиодов.

МОЖНО ИСПОЛЬЗОВАТЬ ВЫКЛЮЧАТЕЛЬ БЕЗ ПОДСВЕТКИ

Подключаем обычную лампу

Если в вашей люстре несколько рожков, вы можете вкрутить параллельно с энергосберегающими лампами обычную. При таком раскладе ток, подзаряжавший ранее конденсатор, будет уходить в нить накала. Однако такой способ вряд ли понравится тем, кто целенаправленно сменил обычные лампочки на энергосберегающие для экономии. Кроме того, в светильнике просто может не быть места для такой лампочки, да и выглядит она иначе, и будет нарушать гармонию и эстетичность прибора.

ПОДКЛЮЧИТЕ ОБЫЧНУЮ ЛАМПОЧКУ ВМЕСТЕ С ЭНЕРГОСБЕРЕГАЮЩЕЙ

Подключаем дополнительное сопротивление

Если менять выключатель не хочется, и вкручивать обычную лампочку – тоже, остаётся вариант подключения резистора (дополнительного сопротивления) параллельно лампе.

Номинальное сопротивление нужного резистора должно составлять 50 кОм, а мощность – 2 Вт. Стоит он недорого, и приобрести его можно в любом радиолюбительском магазине.

В работе люстры резистор никак участвовать не будет, а в отключённом состоянии, когда включается подсветка выключателя, он будет потреблять ток, заряжающий конденсатор в лампочке.

Чтобы обеспечить достаточную безопасность этого решения, изолируйте резистор при помощи термоусадочной трубки. Подключить его можно в плафоне, распределительной коробке или у патрона лампы.

    РЕЗИСТОР В СХЕМЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

    Соединяем подсветку с сетью

    Если отдельным проводом соединить подсветку и сеть, лампочка перестанет мигать при выключенном свете. Однако подсветка работать будет постоянно – и когда люстра включена, и когда оны выключена. Дополнительные энергозатраты при этом минимальны, и потому данное решение можно считать одним из самых удачных.

    Из нескольких перечисленных способов вполне можно выбрать наиболее подходящий для вас и воспользоваться им, ведь выпуск энергосберегающих ламп, не реагирующих на выключатели с подсветкой, пока не налажен, а отказываться от современных ламп и возвращаться к обычным будет слишком нерационально.

    Специалисты компании «Адмирал» хорошо знакомы с проблемой мигающих лампочек, и учитывают возможность возникновения данной проблемы при установке переключателей в процессе своей работы. Воспользовавшись нашими услугами, вы не будете нуждаться в дополнительных работах, связанных с решением подобной проблемы!

    Остались вопросы?

    Закажите консультацию,
    и мы подберем для вас идеальное решение!

    Нажимая на кнопку, вы даете согласие на и соглашаетесь c политикой конфиденциальности компании.

    Феномен электрического облака заставляет свет танцевать.

    Следите за странным шлейфом света над этим облаком в видео ниже.

    Фото пользователя YouTube QuadeM13, из видео

    com/_components/slate-paragraph/instances/cq-article-234257523c97c20ac6e24a3a229dd442-component-1@published»> Когда вы достаточно посмотрите в небо, вы увидите очень,

    действительно странных вещей.

    Пользователь YouTube QuadeM13 катался на велосипеде и заметил странный световой луч, вспыхивающий и крутящийся над облаком. Он остановился и снял это на видео, и оно, ну, действительно очень странное (предупреждение, там бормочет какой-то язык NSFW):

    Что это за штука? Инопланетный маяк? Тор возвращается в Асгард?

    com/_components/slate-paragraph/instances/cq-article-234257523c97c20ac6e24a3a229dd442-component-5@published»> Нет. Это… ледяные кристаллы.

    Серьезно. Здесь происходит то, что тонкое перистое облако, состоящее из кристаллов льда, сталкивается снизу с поднимающимся кучевым облаком. Если кристаллы льда в перистых перистых облаках длинные и имеют игольчатую форму, они выровняются с электрическим полем нижнего кучевого облака, которое создается восходящими и нисходящими потоками внутри кучевого облака. Когда электрическое поле внезапно меняется (например, из-за грозовых разрядов внутри облака), кристаллы льда могут менять ориентацию, отражая и преломляя солнечный свет в другом направлении (обратите внимание, что шлейф на видео имеет тот же цвет, что и солнце). Они делают это как группа, создавая впечатление, что огромные когерентные структуры внезапно меняют форму.

    На видео вспышка довольно яркая, и я полагаю, что от нее можно легко испугаться. Я много наблюдаю за облаками и никогда не видел этого, так что сомневаюсь, что это ужасно распространено; вам нужны правильные обстоятельства, когда кучевое облако поднимается в слой ледяных перистых облаков, а также правильная геометрия, чтобы кристаллы сверкали солнечным светом.

    Еще в 2011 году я написал об этом очень странном явлении. Мне пришлось провести некоторое расследование, чтобы выяснить, что происходит, но в то время я не знал, что они называются «вспышками короны». Так было бы намного проще узнать больше!

    Я нашел письмо в журнал Nature от 1971 года, в котором описывалось это явление, так что люди наблюдают это уже давно. Поиск в Интернете по запросу «crown flash» также выдает множество интересных фотографий и видео.

    В Интернете намного проще находить такие странные вещи. Мне удалось идентифицировать переливающиеся облака, глыбовые облака и многие другие странные атмосферные явления всего несколькими щелчками мыши. Как и любой другой инструмент, Сеть можно использовать во зло или во благо. Я рад, что это может помочь нам увидеть и понять удивительные вещи вокруг нас постоянно.

    Наконечник клетки Фарадея фотографу Джерри Лодригусу.

    • Погода

    Электрические цепи

    Эта основная идея исследуется через:

    • Противопоставление студенческих и научных взглядов
    • Критические идеи обучения
    • Преподавательская деятельность

    Противопоставление студенческого и научного взглядов

    Повседневный опыт студентов

    Студенты имеют большой опыт использования повседневных бытовых приборов, работа которых зависит от электрических цепей (фонарики, мобильные телефоны, iPod).

    Скорее всего, у них сложилось ощущение, что вам нужна батарея или выключатель питания, чтобы они «работали», и что батареи могут «разряжаться». Они склонны думать об электрических цепях как о чем-то, что они называют «током», или «энергией», или «электричеством», или «напряжением» — названиями, которые они часто используют взаимозаменяемо. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, скорее всего, увидят электрические цепи как связанные с «потоком» и чем-то, что «сохраняется», «используется» или и тем, и другим. Некоторая повседневная лексика, например о «зарядке аккумуляторов», также может быть источником концептуальной путаницы для учащихся.

    В частности, учащиеся часто рассматривают ток как то же самое, что и напряжение, и думают, что ток можно хранить в батарее, и этот ток можно израсходовать или преобразовать в форму энергии, такую ​​как свет или тепло.

    Студенты обычно используют четыре модели для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

    В частности, учащиеся часто рассматривают ток как то же самое, что и напряжение, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепла.

    Студенты обычно используют четыре модели для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

    • «однополярная модель» — точка зрения, что на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
    • «Модель конфликтующих токов» – представление о том, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
    • ‘модель потребляемого тока’ — представление о том, что ток «расходуется» по мере того, как он «обходит» цепь, так что ток «текущий к» лампочке больше, чем ток «утекающий» от нее обратно к батарея.
    • «научная модель» — представление о том, что ток в обоих проводах одинаков.

    Повседневный опыт учащихся с электрическими цепями часто приводит к запутанному мышлению. Учащиеся, которые знают, что можно получить удар током, если дотронуться до клемм пустой бытовой розетки, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются они ее или нет. (Точно так же они могут полагать, что в любых проводах, подключенных к батарее или розетке, есть ток, независимо от того, замкнут ли выключатель.)

    Некоторые студенты считают, что пластиковая изоляция проводов, используемых в электрических цепях, удерживает и направляет электрический ток так же, как водопроводные трубы удерживают и контролируют поток воды.

    Исследования: Osborne (1980), Osborne & Freyberg (1985), Shipstone (1985), Shipstone & Gunstone (1985), White & Gunstone (1980) ) относится к области науки.

    Модели играют важную роль, помогая нам понять вещи, которых мы не видим, и поэтому они особенно полезны при попытке разобраться в электрических цепях. Модели ценятся как за их объяснительную способность, так и за их предсказательную способность. Однако модели также имеют ограничения.

    Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические и микроскопические свойства). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, таких как керамика, заряженные частицы перемещаются гораздо труднее.

    В научной модели электрический ток представляет собой общее движение заряженных частиц в одном направлении. Причиной этого движения является источник энергии наподобие батареи, которая толкает заряженные частицы. Заряженные частицы могут двигаться только тогда, когда существует полный проводящий путь (называемый «контуром» или «петлей») от одного вывода батареи к другому.

    Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводников, соединяющих две клеммы батареи с двумя концами лампочки. В научной модели такой простой цепи движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, — это электроны.

    Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от своей отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика – бесконтактная сила). Любой отдельный электрон перемещается только на короткое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Понятие напряжения»). В то время как фактическое направление движения электронов — от отрицательного к положительному выводу батареи, по историческим причинам обычно направление тока описывается как направление от положительного к отрицательному выводу (так называемый «условный ток»). ‘).

    Энергия батареи сохраняется в виде химической энергии (см. основную идею «Преобразование энергии»). Когда он подключен к полной цепи, электроны движутся, и энергия передается от батареи к компонентам цепи. Большая часть энергии передается световому шару (или другому потребителю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). Очень небольшое количество преобразуется в тепло в соединительных проводах.

    Напряжение батареи говорит нам, сколько энергии она обеспечивает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея выталкивает электроны в цепи: чем больше напряжение, тем сильнее толчок (см. Использование энергии).

    Важные обучающие идеи

    • Электрический ток представляет собой общее движение заряженных частиц в одном направлении.
    • Для получения электрического тока необходима непрерывная цепь от одной клеммы батареи к другой.
    • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
    • В большинстве цепей движущимися заряженными частицами являются отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах цепи.
    • Батарея толкает электроны по цепи.

    Исследование: Loughran, Berry & Mulhall (2006)

    Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

    Язык, используемый учителями, важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «течении» тока вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» является свойством веществ, подобно массе, лучше говорить о «заряженных частицах», чем о «зарядах».

    Идея фокуса В разделе «Введение в научный язык» содержится дополнительная информация о развитии научного языка у учащихся.

    Использование моделей, метафор и аналогий крайне важно для развития понимания учащимися электрических цепей, потому что объяснение того, что мы наблюдаем в цепи (например, зажигание лампочки), включает в себя использование научных идей о вещах, которые мы не можем видеть, таких как энергия и электроны. Поскольку все модели/метафоры/аналогии имеют свои ограничения, важно использовать их множество. Не менее важно четко понимать сходства и различия между любой используемой моделью/метафорой/аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) заключается в том, что они подразумевают, что любой данный электрон движется по всей цепи.

    Исследуйте взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции – электричество и магнетизм и модели

    Некоторые полезные модели и аналогии для использования:

    • аналогия с велосипедной цепью — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи. Движение велосипедной цепи аналогично току в полной цепи. Движущаяся цепь передает энергию от педали (то есть «батареи») к заднему колесу (то есть «компонентам цепи»), где энергия преобразуется. Эта модель имеет ограниченную полезность и требует, чтобы учащийся осознал, что заднее колесо является компонентом, выполняющим преобразование энергии.
    • модель желейных бобов — это полезно для развития идеи о том, что движение электронов в цепи сопровождается передачей энергии. Учащиеся разыгрывают «электроны» в электрической цепи. Каждый из них собирает фиксированное количество желейных бобов, представляющих энергию, когда они проходят через «батарейку», и отдают эту «энергию», когда они достигают/проходят через «лампочку». Эти студенческие «электроны» затем возвращаются к «батарее» для получения дополнительной «энергии», что включает в себя получение большего количества мармеладок.

    Другое описание этого вида деятельности представлено в виньетке PEEL Ролевая игра «Жемейные бобы». Эта модель может быть очень мощной, но важным ограничением является то, что она представляет энергию как субстанцию, а не как изобретенную человеком конструкцию.

    • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарейка» и тянет веревку так, чтобы она скользила по рукам других учеников, «компонентов схемы». Студенты могут чувствовать, как их пальцы нагреваются, поскольку энергия трансформируется, когда студенческая батарея тянет веревку

    Для получения дополнительной информации о разработке идей об энергии см. основную идею Использование энергии.

    • модель водяного контура — часто используется в учебниках, и на первый взгляд кажется, что это модель, с которой учащиеся могут легко разобраться; однако важно, чтобы учителя знали о его ограничениях.

    В этой модели насос изображает аккумулятор, турбина — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут опираться на свой повседневный опыт и ошибочно заключить, например, что электрический ток может просачиваться из проводов контура таким же образом, как вода может вытекать из труб.

    Исследование: Loughran, Berry & Mulhall ​(2006)

    Преподавательская деятельность

    Открытое обсуждение через обмен опытом

    Упражнение POE (Предсказать-Наблюдать-Объяснить) — полезный способ начать обсуждение. Дайте учащимся батарейку, лампочку для фонарика (или другую лампочку с нитью накаливания) и соединительный провод. Попросите их предсказать, как должна быть подключена цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте держатель лампы. Это должно вызвать дискуссию о необходимости полной петли для тока и о пути тока в лампочке. Эту деятельность можно расширить, поощряя учащихся использовать другие материалы вместо проволоки.

    Оспорить некоторые существующие идеи

    Ряд POE (Предсказать-Наблюдать-Объяснить) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

    Прояснить и закрепить идеи для/посредством общения с другими

    Попросите учащихся изучить модели и аналогии электрических цепей, представленные выше. Учащиеся должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

    Обратите внимание учащихся на упущенную из виду деталь

    Попросите учащихся изучить работу горелки и нарисовать рисунок, показывающий путь тока при замкнутом выключателе.