Подключение последовательное ламп: подробная инструкция схемы с выключателем

Содержание

Параллельное и последовательное соединение лампочек

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов.

Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное – схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.

Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.

Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.

Типы ламп и схемы подключения

Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.

Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.

Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.

Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.

Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.

В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.

Видео на тему

Как соединены между собой лампы на схемах

Главная » Виды ламп » Лампы накаливания

Автор: Школа светодизайна MosBuild

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Люстра с большим числом лампочек

Содержание

  1. Электрическая цепь с последовательным соединением
  2. Чем слабее, тем ярче
  3. Перед последовательным соединением
  4. Лучше соединять параллельно

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток.

В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.

Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Параллельное соединение лампочек

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

Понравилась статья? Поделиться с друзьями:

Что такое последовательные и параллельные цепи?

Светильники могут быть соединены последовательно или параллельно. Лампы, соединенные последовательно, используют одну и ту же цепь, в то время как лампы, соединенные параллельно, имеют свою собственную цепь.


Самая важная информация с первого взгляда:


  • последовательная схема: все лампы подключены к одной цепи
  • тандемная последовательная цепь: тип последовательной цепи, в которой два светильника подключены к одному балласту
  • параллельная цепь: у каждого фонаря своя цепь
  • двойная параллельная цепь: тип параллельной цепи, в которой два источника света соединены параллельно (один индуктивный и один емкостной)

 

Вверху: последовательная цепь с двумя резисторами;
Внизу: параллельная цепь с двумя резисторами

 

Saure — собственная работа, CC0, ссылка

Что такое последовательная цепь?

 

В последовательной цепи все компоненты подключены к одной и той же одиночной цепи. Это означает, что через все подключенные компоненты протекает один и тот же ток, и они разделяют ток. Вы можете подключить столько компонентов, сколько позволяет блок питания.

 

Очень распространенным примером последовательной цепи является цепочка огней. Например, если вы подключите цепочку из десяти ламп к розетке 230 В, каждая лампа получит 23 В. Напряжение равномерно распределяется между всеми компонентами. Если один свет перегорит, вся цепочка огней не загорится.

 

Серийная цепь для газоразрядных ламп

 

Если газоразрядные лампы имеют одинаковую номинальную цепь, их можно соединять последовательно. Убедитесь, что используется правильный балласт, чтобы не превышалось ограничение по току.

 

Серийная цепь для ламп накаливания

 

Номинальная цепь для ламп накаливания также должна быть идентична для их последовательного соединения.

 

Что такое тандемный контур?

 

Тандемная цепь — это тип последовательной цепи. Два источника света, например люминесцентные лампы, подключаются к одному балласту. Однако для каждой трубки по-прежнему нужен свой стартер. Стартер должен подходить для использования в тандемной схеме. Подходящие стартеры содержат в названии изделия обозначение «серия» или аббревиатуру SER.

 

Некоторые из имеющихся у нас пускателей, которые подходят для последовательных/тандемных цепей, включают:


Стартер Osram 4-22W



Osram 4-22W Безопасность



Philips S2 4-22 Вт



Philips S2E 18–22 Вт


 

Одиночные пускатели не подходят для использования с последовательными/парными цепями, поскольку они не работают с общим напряжением сети.

 

Тандемная схема для светодиодов

 

Если вы хотите переключиться с люминесцентных ламп на светодиодные лампы с тандемными цепями, потребуется повторная проводка. Пожалуйста, проконсультируйтесь с экспертом для этого.

 

Что такое параллельная цепь?

 

Параллельная цепь соединяет два или более биполярных компонента. Важно соединять только одинаковые полюса друг с другом.

 

Каждый свет в параллельной цепи имеет свою собственную цепь. Отдельные токи складываются в общий ток. Напряжение для каждой лампы одинаковое. В отличие от последовательной цепи, если одна лампочка выходит из строя в параллельной цепи, другие лампочки продолжают гореть.

 

Параллельная цепь для газоразрядных ламп

 

Газоразрядные лампы могут быть подключены параллельно только косвенно. Необходимый балласт можно подключить последовательно. Лампу и балласт вместе можно соединить параллельно.

 

Что такое схема Duo?

 

Двойной контур соединяет две ветви люминесцентных ламп. Одна ветвь индуктивная и состоит из обычного балласта и трубки. Другая ветвь является емкостной и также состоит из обычного балласта и трубки, а также дополнительного конденсатора для коррекции коэффициента мощности. Конденсатор включен последовательно с балластом. Используя двойную схему, можно избежать чрезмерных токов.

 

Определение: что такое конденсатор?

 

Конденсатор — это электронный компонент, способный накапливать энергию. Таким образом, свет может некоторое время гореть даже после выключения.

 

Освещение от Any-Lamp

 

Any-Lamp предлагает широкий ассортимент светодиодного освещения от различных брендов высшего качества. Благодаря энергосберегающему светодиодному освещению вы можете сэкономить до 70 % затрат на электроэнергию .

 

Информация

Серия

и параллельные схемы: в чем разница?

Узнайте, чем последовательные схемы отличаются от параллельных

К

Тимоти Тиле

Тимоти Тиле

Тимоти Тиле имеет степень младшего специалиста в области электроники и является местным электриком № 176 IBEW с более чем 30-летним опытом работы в жилых, коммерческих и промышленных электросетях.

Узнайте больше о The Spruce’s Редакционный процесс

Обновлено 26.10.21

Один из первых принципов, который нужно понять, изучая электричество, — это различие между параллельной и последовательной цепями. Оба типа цепей питают несколько устройств с помощью электрического тока, протекающего по проводам, но на этом сходство заканчивается.

Чтобы понять разницу между цепью, в которой устройства соединены последовательно , и цепью, в которой они соединены параллельно, вы должны сначала понять основы электрической цепи.

Проще говоря, все схемы работают, создавая замкнутый контур проводов, по которым может течь электрический ток. Электрический ток — это, по сути, движение электронов по цепи от источника (через горячие провода) и обратно к источнику (через нейтральные провода). Когда к этой цепи подключены источники света или другие устройства, движущийся ток может питать эти устройства. Любое прерывание пути (например, размыкание переключателя) останавливает поток электрического тока, мгновенно прерывая цепь.

Основы домашней электротехники 101

Что такое последовательная цепь?

Последовательная цепь представляет собой замкнутую цепь, в которой ток протекает по одному пути. В последовательной цепи устройства вдоль контура цепи соединены в непрерывный ряд, так что при отказе или отключении одного устройства прерывается вся цепь. Таким образом, все устройства в цепи перестают работать одновременно. Последовательные цепи довольно редко встречаются в домашней проводке, но иногда они используются в цепочках рождественских огней или ландшафтных светильников, где выход из строя одной лампочки приводит к тому, что вся цепочка гаснет.

Когда лампочка гаснет в цепочке праздничных огней, это создает обрыв в проводке. Однако многие современные цепочки праздничных огней теперь подключаются через параллельную цепь, так что гирлянда может оставаться работоспособной, даже если одна из лампочек неисправна. Большинство новых светодиодных праздничных огней подключаются в виде параллельных цепей.

Что такое параллельная цепь?

Гораздо более распространенными, чем последовательные цепи, являются те, которые соединены параллельно, включая большинство бытовых ответвлений, питающих осветительные приборы, розетки и приборы. Параллельная цепь также является замкнутой цепью, в которой ток разделяется на два или более пути, прежде чем снова собраться вместе, чтобы завершить полную цепь. Здесь проводка сконфигурирована так, что каждое устройство находится в постоянном контакте с магистралью основной цепи. Отдельные устройства просто «подключаются» к контуру главной цепи, подобно тому, как съезды на автостраде позволяют автомобилям существовать и въезжать на автостраду, не прерывая основную магистраль. Параллельная схема имеет много таких контуров «вход/выход», так что сбой в любом отдельном контуре никогда не отключит всю цепь.

Большинство стандартных бытовых цепей на 120 вольт в вашем доме являются (или должны быть) параллельными цепями. Розетки, выключатели и осветительные приборы подключены таким образом, что горячие и нейтральные провода поддерживают непрерывный путь цепи, независимый от отдельных устройств, получающих питание от цепи.

Иногда этот непрерывный путь создается путем «связывания» проводов цепи для питания розетки или светильника (косички представляют собой выходной и входной пандусы для протекания тока). В других случаях конструкция устройства создает непрерывный непрерывный путь. Стандартная розетка, например, имеет металлическую полосу (соединительный язычок) между парами винтовых клемм, которая обеспечивает сохранение пути к следующей розетке. Если розетка выйдет из строя, соединительный выступ на устройстве гарантирует, что ток продолжится до следующей розетки в цепи.

Когда использовать последовательную цепь вместо параллельной

Один бытовой пример, когда последовательная проводка полезна, когда одна розетка GFCI (прерыватель цепи замыкания на землю) используется для защиты других стандартных розеток, расположенных «ниже по потоку» от GFCI.

Розетка GFCI имеет винтовые клеммы с маркировкой «линия», а также винтовые клеммы с маркировкой «нагрузка». Нагрузочные клеммы можно использовать для удлинения проводки к дополнительным обычным розеткам за пределами GFCI, что также позволяет им пользоваться защитой GFCI.