Расчет тока по мощности — как правильно вычислить
Часто возникает ситуация, когда известна мощность электродвигателя или потребляемая мощность какого-то прибора в кВт или Ваттах, а какое значение выставить на токовом реле или автоматическом выключателе непонятно. Или чисто бытовой вопрос как расчитать ток вводного автомата в квартиру, если разрешенная мощность на вводе 6 или 10 кВт. Эта статья написана так чтобы быть понятной даже для далеких от техники и электричества людей. Но и те, кто просто давно не пользовался и забыл нужные формулы тоже найдет здесь нужную информацию. Здесь мы разберемся как рассчитать ток по мощности, так и наоборот, как сделать расчет мощности по току.
Что такое ток, напряжение и мощность
Чтобы понять работу эклектической сети представим, что напряжение – это перепад высоты. Например, есть точка А (это фаза), которая на 220 см выше точки В (это ноль). И между этими точками наклонно проложена труба. Если залить воду в верхний конец трубы она потечет вниз – это можно сравнить с электрическим током. Чем больше воды течет, тем больше ток. Теперь представим, что вода течет не просто так, а попадает на колесо мельницы. Чем больше воды и чем сильнее она разогнана, тем более тяжелое колесо этот поток сможет сдвинуть и разогнать до более высокой скорости – это мощность. То есть мощность – это количество полезной работы, которую может сделать электрический ток.
Если мы не можем изменить наклон (напряжение) чтобы увеличить количество выполняемой работы, остается увеличивать ток. А значит лить воды побольше и брать трубу потолще. Вот тут прямая аналогия между толщиной провода и диаметром трубы. Через толстый провод может «пролезть» больше тока.
ВАЖНО! Не стоит ставить на ввод старого дома автоматический выключатель слишком большого номинала. Ну чтобы хватало и можно было одновременно и чайник, и стиральную машинку и микроволновку включить. Старая проводка, которая была рассчитана на 5-6 кВт общей нагрузки этого не выдержит и сгорит первой, хорошо если не вместе с домом.
Но сколько это вот это не слишком много и есть ли какой-то калькулятора мощности и тока.
Формула расчета мощности однофазной и трехфазной нагрузки
В бытовых сетях напряжение как правило 220 В – это однофазная сеть, где есть одна фаза, ноль, ну и в современных сетях кроме нуля есть еще провод заземления. Если какой-то электродвигатель или другой прибор рассчитан на работу в трехфазной сети, то на нем часто указано напряжение 220/380В или 250/400. В таких цепях идет три фазных провода, один нулевой, ну и защитное заземление. Напряжение в 380В получается между разными фазами. В это же время напряжение (разница потенциалов) любой из фаз относительно нуля 220В. Не будем здесь разбирать подробно как это получается, там все дело в сдвиге фазного напряжения в сетях переменного тока именно поэтому напряжение между соседними фазами каждая из которых дает 220В относительно нуля 380 В, а не 440В.
Есть формула определения электрической мощности из школьного курса физики:
P=U*I,
где Р – это мощность в ваттах или киловаттах, U – напряжение в вольтах, I – это сила тока в амперах.
I = P/U
Она прекрасно работает для постоянного тока, там, где питанием служит батарейка или аккумулятор. Но с цепями переменного тока где направление движения тока меняется 50 раз в секунду все немного по-другому.
Продолжая нашу аналогию перепадами уровней и трубами наша точка А (фаза) 50 раз в секунду меняет положение то выше, то ниже нуля, на 220см. И эта «болтанка» вносит свои коррективы.
Формула для расчета тока по мощности для однофазной сети переменного тока:
I = P / (U × cosφ)
Здесь появляется новая величина – cosⱷ (косинус фи) в бытовых электросетях она равна 0,9-0,98. Угол ⱷ — это угол между вектором тока и напряжения, и чем этот угол меньше, тем ближе косинус к единице. По сути она показывает насколько эффективно работает электрический ток.
Если продолжить нашу аналогию с водой и перепадами уровней, то здесь таким углом ⱷ может быть задержка в токе воды. Когда перепад высоты уже изменился на противоположный, а вода в трубах в обратную сторону течь еще не начала. Вода никуда не девается и все равно доходит куда нужно, но момент инерции задерживает поток и немного снижает эффективность.
Для примера посчитаем какой ток потребляет электрочайник мощностью 2кВт и компьютер с монитором общей мощностью 450 Вт.
Итак, известно:
- напряжение бытовой сети – 220В частотой 50Гц;
- примем cosⱷ = 0,95
- мощность1 = 2000 Вт, мощность2 = 450 Вт.
Ток, потребляемый чайником:
I = 2000/(220*0,95) = 2000/209 = 9,6 ампер
Ток, потребляемый компьютером:
Но что, если нужно подобрать автомат защиты или тепловое реле для трехфазной цепи. Например, для подключения циркулярной пилы с трехфазным двигателем. Здесь расчёт тока по мощности выглядит так
I = P / (U × cosφ × √3)
Здесь добавляется , и величина косинуса фи, в трехфазных сетях тоже меньше. Все зависит от нагрузки. Электромоторы как раз снижают этот показатель. И на табличке каждого электродвигателя кроме номинального напряжения и мощности указывается паспортное значение cosⱷ. Чаще всего это значение находится в диапазоне от 0,78 до 0,88, в зависимости от года выпуска и класса двигателя.
Для примера допустим, что у нас электродвигатель:
- мощностью 3 кВт;
- косинусом фи – 0,83;
- подключен треугольником – значит напряжение 380В.
I = 3000/(380*0,83*1,732) = 5,5 ампер
Вы, наверное, заметили, что токи в трехфазных сетях всегда меньше по сравнению с однофазными при одинаковой полезной мощности. Это действительно так и не только за счет более высокого напряжения. Но физические принципы здесь разбирать не будем, но будем рады если те, кому интересно докопаться до сути найдет ответ самостоятельно.
Как подобрать автоматический выключатель по нагрузке бытовой техники
Разберем обратную ситуацию, когда есть автоматические выключатели стандартных номиналов: 10; 16; 25; 32; 40 А. Как определить какую нагрузку они выдерживают и сколько розеток можно подключить к одному выключателю.
Скорее всего речь идет о бытовой однофазной сети напряжением 220 А и можно воспользоваться теми же формулами, что описаны выше.
Но для приблизительных расчетов можно воспользоваться приведенными коэффициентами. Для однофазной сети это 4,6. Например нужно быстро прикинуть какую мощность выдержит автомат на 16А
16/4,6 =3,47 кВт
Это довольно много, значит можно смело подключать четыре розетки, например, на кухне. Каждая бытовая розетка рассчитана на ток 10 А. Но вряд ли все четыре розетки будут задействованы и загружены одновременно. Возможна ситуация, когда одновременно работает электрочайник и микроволновая печь, но их суммарную нагрузку (чайник 2 кВт + микроволновка 1 кВт) автомат вполне выдержит.
Для особо мощных потребителей стиральной машины или электродуховки лучше выделить отдельный автоматический выключатель на одну розетку.
Электроплиту с духовкой нужно запитывать отдельной кабельной линией через специальный силовой разъем. В квартирах где по проекту изначально предполагалась электроплита вся подводка для подключения должна быть подготовлена строителями.
Для трехфазных сетей тоже есть такие приблизительные коэффициенты, но там еще нужно учитывать к фазному или линейному напряжению должна быть подключена нагрузка (220 или 380В). И если выбрать неправильный вариант можно сильно ошибиться поэтому приводить в этой статье мы их не будем. Лучше обратиться к профессионалам в крайнем случае воспользоваться одним из множества онлайн калькуляторов для расчетов мощности и тока.
Не менее важно правильно подобрать сечение проводов и кабелей для проводки, см. таблицу ниже.
Надеемся материал статьи был для вас полезен. Если нужно подобрать автоматические выключатели и корпус для квартирного щитка звоните по номеру 066 165-65-35.
Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?
Автор Даниил Леонидович На чтение 6 мин. Просмотров 44. 5k. Опубликовано
Обновлено
Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.
Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.
Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.
Содержание
- Что такое мощность в электричестве: просто о сложном
- Как рассчитать электрическую мощность в быту
- Как измерить электрическую мощность дома
- Почему реактивное сопротивление схемы влияет на мощность переменного тока
- Формулы расчета мощности для однофазной и трехфазной схемы питания
- Как работает схема трехфазного электроснабжения
- Как узнать ток, зная мощность и напряжение
- Как узнать напряжение, зная силу тока
- Как рассчитать мощность, зная силу тока и напряжение
- Интересная инфа по теме
- Заключение
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии.
Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как рассчитать электрическую мощность в быту
Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.
Отсюда получим формулы для расчета мощности (P):
- U*I;
- I2*R;
- U*I*cos(фи).
В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат.
Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.
Как измерить электрическую мощность дома
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.
ВаттметрВо время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.
Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.
Формулы расчета мощности для однофазной и трехфазной схемы питания
Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).
Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).
Как работает схема трехфазного электроснабжения
Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.
Как узнать ток, зная мощность и напряжение
Для вычисления тока электросети по мощности и напряжению используют формулы:
- I=P/U – постоянный ток;
- I=P/(U*cos(фи)) — однофазная сеть;
- I=P/(1,73*U*cos(фи)) — трехфазная сеть.
Для простоты расчетов значение фи принимают равной 0,95.
Как узнать напряжение, зная силу тока
Для расчета напряжения используют формулы:
U=P/I – постоянный ток;
U=P/(I*cos(фи)) — однофазная сеть;
U=P/(1,73*I*cos(фи)) — трехфазная сеть.
Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.
Как рассчитать мощность, зная силу тока и напряжение
Силовую характеристику электроустановок рассчитывают по формуле:
P=U*I — постоянный ток;
P=U*I*cos(фи) – переменный ток однофазной сети.
P=1,73*U*I*cos(фи) — трехфазная сеть.
В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.
Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.
Интересная инфа по теме
Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.
youtube.com/embed/SzU8fOkxbQA?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Заключение
Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.
вольт, ампер, ватт, ватт-час и стоимость
Примечание редактора: этот блог был первоначально опубликован в 2015 году. Хотя электрические определения не изменились, он был обновлен в 2023 году, поскольку стоимость электроэнергии увеличилась, а ресурсы для мониторинга добавлено энергопотребление .
Мы живем в мире электричества. Он управляет нашим освещением, отоплением, охлаждением, компьютерами и оборудованием. Возьмем центр обработки данных или любое крупное энергоемкое предприятие — им требуется электроэнергия для работы, и они должны обеспечить постоянную доступность достаточного количества энергии. Но энергия не бесплатна, и с почти постоянным ростом цен сейчас важно понимать использование электроэнергии как никогда ранее. Менеджеры центров обработки данных внимательно следят за мощностью, поскольку стоимость энергии, используемой сервером в течение срока службы, обычно превышает его покупную цену. И большинство центров обработки данных тратят вдвое больше на охлаждение серверов и отвод тепла от объекта.
Ресурс: Руководство по мониторингу электропитания центра обработки данных
Вот краткий обзор основ электричества — вольты, амперы, ватты и ватт-часы. Информация внизу о том, сколько стоит делать определенные вещи с питанием, превращает этот обзор основ в руководство, как выяснить, имеет ли смысл инвестировать в мониторинг энергопотребления для бизнеса.
Электричество Электричество — это общее название электрической энергии. Электричество технически представляет собой поток электронов через проводник, обычно медный провод. Всякий раз, когда электричество поступает к устройству, такое же количество должно вернуться. Это система «замкнутого цикла». Электроны в проводе на самом деле движутся довольно медленно, не со скоростью света. Сигналы распространяются со скоростью (близкой к) скорости света.
Аналогия с водопроводной трубой для понимания электричества
Представьте себе 100-футовую трубу, наполненную водой: когда вы открываете вентиль на одном конце, вода почти сразу же вытекает с другого конца, даже если ни одна капля воды не прошла. полные 100 футов. Однако волна давления прошла 100 футов.
Напряжение Измеряется в вольтах (В) по Алессандро Вольта. Это «давление» электричества. Центры обработки данных обычно получают электроэнергию из коммунальной сети с высоким напряжением, обычно 480 В, которое затем должно быть преобразовано в более низкое напряжение для использования ИТ-оборудованием. В Северной Америке большинство ИТ-систем в центрах обработки данных используют напряжение 110 В, 208 В или 220 В. В большей части остального мира более распространены сети от 220 до 240 В. Напряжения в пределах примерно 10% используются взаимозаменяемо, поэтому вы можете услышать, что одна и та же установка описывается как 110 В, 115 В или 120 В.
Электрическое напряжение, как и давление воды, на самом деле не говорит вам, сколько «работы» (мощности) может выполнить система. Представьте крошечную трубку: она может подавать воду под огромным давлением, но вы не можете использовать ее для привода водяного колеса.
ТокИзмеряется в амперах или амперах (А) по Луиджи Амперу. Это «скорость потока» электричества (сколько электронов в секунду проходит через данный проводник). Ток описывает объем, но не давление, поэтому сам по себе он не дает полной картины мощности.
Представьте себе большую водопроводную трубу: по ней может течь много воды, но энергия, которую она несет, зависит от ее давления. Более высокие токи требуют более толстых и дорогих кабелей. Основной источник питания для крупного промышленного объекта может составлять тысячи ампер. В центре обработки данных он распределяется, поэтому к тому времени, когда он достигает стойки с серверами, он составляет от 20 до 63 А.
Измеряется в ваттах (Вт) по Джеймсу Ватту. Это полезная работа, совершаемая электричеством. Ватты отражают работу, выполняемую в данный момент, а НЕ энергию, потребляемую с течением времени. Мощность в ваттах рассчитывается путем умножения напряжения в вольтах на силу тока в амперах: 10 ампер тока при 240 вольт генерирует мощность 2400 ватт. Это означает, что один и тот же ток может обеспечить вдвое большую мощность, если удвоить напряжение. Растет спрос на линии электропередачи более высокого напряжения отчасти потому, что они делают возобновляемые источники энергии, такие как солнечная энергия и ветер, более жизнеспособными. Центры обработки данных также переходят на конфигурации с более высоким напряжением. Мощность также можно измерить как «реальную» и «кажущуюся» с «коэффициентом мощности», который преобразует одно в другое. Узнайте о коэффициенте мощности здесь.
Измеряется в ватт-часах (Втч). Ватт-час — это количество выполненной работы (т. е. высвобожденной энергии) при подаче мощности 1 Вт в течение 1 часа. Лампа мощностью 100 Вт, оставленная включенной на 10 часов, потребляет 1000 Втч (или 1 кВтч) энергии.
СтоимостьОбычно вы платите за электроэнергию в киловатт-часах (кВтч) или 1000 Втч. Средняя стоимость в США составляет около 0,17 доллара за кВтч (эта цена выросла примерно на 15% в период с 2021 по 2023 год). Во многих других частях мира она намного выше. Вы можете сделать математику о том, что ваше учреждение тратит. Вот несколько примеров.
Во-первых, компьютерный сервер, потребляющий 500 Вт при работе в течение года, будет потреблять 500 Вт x 8 760 часов = 4 380 000 Втч = 4 380 кВтч. Если вы платите 0,17 доллара США за кВтч, стоимость запуска сервера составит 4380 x 0,17 доллара США/кВтч = 745 долларов США в год. Сюда не входят затраты на охлаждение сервера, которые могут удвоить или даже утроить общие годовые затраты.
Во-вторых, рассмотрим предприятие по выращиванию каннабиса. По оценкам организации по торговле электроэнергией в штате Вашингтон, для питания освещения и производства одного фунта продукции требуется от 2000 до 3000 кВтч. Плата 0,17 доллара за кВтч составляет от 340 до 510 долларов в год за фунт.
Наконец, давайте посмотрим на электромобили. Электромобили оцениваются на основе киловатт-часов на милю, и типичное число составляет около 0,35 кВтч на милю. При цене 0,17 доллара за кВтч вы теоретически можете проехать милю за 0,06 доллара на электромобиле. Это звучит дешево, но если вы управляете парком транспортных средств, это, безусловно, расходы, за которыми вам нужно внимательно следить.
В конце нет теста для проверки ваших знаний. Но внимание к основам поможет избежать неприятных сюрпризов. Packet Power упрощает и делает более доступным для руководителей критически важных объектов отслеживание и анализ энергопотребления. Поговорите с нашей командой, чтобы узнать, как мы можем помочь вам с вашими потребностями.
Источник: Средние цены на энергию в США https://www.bls.gov/regions/midwest/data/averageenergyprices_selectedareas_table.htm
19,4 Электроэнергия | Техасский шлюз
Цели обученияПрактические задачиПроверьте свое понимание
Цели обучения
К концу этого раздела вы сможете делать следующее:
- Дать определение электрической мощности и описать уравнение электрической мощности
- Расчет электрической мощности в цепях резисторов, соединенных последовательно, параллельно и комплексно
Энергия у многих ассоциируется с электричеством. Каждый день мы используем электроэнергию для работы наших современных приборов. Линии электропередачи являются наглядными примерами электроснабжения. Мы также используем электроэнергию, чтобы заводить автомобили, компьютеры или освещать дома. Мощность — это скорость передачи энергии любого типа; электрическая мощность – это скорость, с которой электрическая энергия передается в цепи. В этом разделе мы узнаем не только, что это значит, но и какие факторы определяют электрическую мощность.
Для начала давайте подумаем об лампочках, которые часто характеризуются номинальной мощностью в ваттах. Сравним лампочку мощностью 25 Вт с лампочкой мощностью 60 Вт (см. рис. 19.23). Хотя оба работают при одинаковом напряжении, лампа мощностью 60 Вт излучает больше света, чем лампа мощностью 25 Вт. Это говорит нам о том, что выходная мощность электрической цепи определяется не напряжением, а чем-то иным.
Лампы накаливания, такие как две, показанные на рис. 19.23, по существу представляют собой резисторы, которые нагреваются, когда через них проходит ток, и нагреваются настолько, что излучают видимый и невидимый свет. Таким образом, две лампочки на фотографии можно рассматривать как два разных резистора. В простой цепи, такой как лампочка с приложенным к ней напряжением, сопротивление определяет ток по закону Ома, поэтому мы можем видеть, что ток, как и напряжение, должен определять мощность.
Рис. 19.23 Слева — лампочка мощностью 25 Вт, справа — лампочка мощностью 60 Вт. Почему их выходная мощность различна, несмотря на то, что они работают на одном и том же напряжении?
Формулу мощности можно найти с помощью размерного анализа. Рассмотрим единицы мощности. В системе СИ мощность указывается в ваттах (Вт), что представляет собой энергию в единицу времени, или Дж/с
19,47 Вт=Джс.Вт=Джс.
Вспомним теперь, что напряжение — это потенциальная энергия на единицу заряда, а это означает, что единицы напряжения составляют Дж/Кл
19. 48В=JC.V=JC.
Мы можем переписать это уравнение как J=V×CJ=V×C и подставить его в уравнение для ватт, чтобы получить
W=Js=V×Cs=V×Cs.W=Js=V×Cs=V ×Сс.
Но кулон в секунду (Кл/с) — это электрический ток, который мы можем видеть из определения электрического тока, I=ΔQΔtI=ΔQΔt, где ΔΔ Q — заряд в кулонах, а ΔΔ t — время в секундах. Таким образом, приведенное выше уравнение говорит нам, что электрическая мощность равна напряжению, умноженному на ток, или
Р=IV. Р=IV.
Это уравнение дает электрическую мощность, потребляемую цепью с падением напряжения В и током I .
Например, рассмотрим схему на рис. 19.24. По закону Ома ток, протекающий через цепь, равен
19,49I=VR=12 В100 Ом=0,12 A.I=VR=12 В100 Ом=0,12 А. VI=(12 В)(0,12 А)=1,4 Вт.P=VI=(12 В)(0,12 А)=1,4 Вт.
Куда уходит эта мощность? В этой схеме мощность идет в основном на нагрев резистора в этой цепи.
Рис. 19.24 Простая схема, потребляющая электроэнергию.
При расчете мощности в цепи на рис. 19.24 мы использовали сопротивление и закон Ома для определения силы тока. Закон Ома дает ток: I=V/RI=V/R, который мы можем подставить в уравнение для электрической мощности, чтобы получить
P=IV=(VR)V=V2RP.P=IV=(VR)V= В2Р.
Мощность определяется только напряжением и сопротивлением.
Мы также можем использовать закон Ома, чтобы исключить напряжение из уравнения для электрической мощности и получить выражение для мощности только через ток и сопротивление. Если мы запишем закон Ома как V=IRV=IR и используйте это, чтобы устранить V в уравнении P=IVP=IV получаем
P=IV=I(IR)=I2R.P=IV=I(IR)=I2R.
Мощность определяется только током и сопротивлением.
Таким образом, комбинируя закон Ома с уравнением P=IVP=IV для электрической мощности, мы получаем еще два выражения для мощности: одно через напряжение и сопротивление, а другое через ток и сопротивление. Обратите внимание, что в выражения для электрической мощности входят только сопротивление (а не емкость или что-то еще), ток и напряжение. Это означает, что физической характеристикой цепи, которая определяет, сколько мощности она рассеивает, является ее сопротивление. Любые конденсаторы в цепи не рассеивают электроэнергию — наоборот, конденсаторы либо хранят электроэнергию, либо отдают ее обратно в цепь.
Чтобы понять, как связаны между собой напряжение, сопротивление, ток и мощность, рассмотрите рис. 19.25, на котором показано колесо формул . Величины в центральной четверти окружности равны количествам в соответствующей внешней четверти окружности. Например, чтобы выразить потенциал V через мощность и ток, мы видим из круга формул, что V=P/IV=P/I.
Рис. 19.25 Колесо формул показывает, как соотносятся вольты, сопротивление, ток и мощность. Количества во внутренних четвертях кругов равны количествам в соответствующих внешних четвертях кругов.
Рабочий пример
Найдите сопротивление лампочки
Типичная старая лампочка накаливания имела мощность 60 Вт. Если предположить, что на лампочку подается напряжение 120 В, какова сила тока через лампочку?
СТРАТЕГИЯ
Нам известны напряжение и выходная мощность простой цепи, содержащей лампочку, поэтому мы можем использовать уравнение P=IVP=IV, чтобы найти ток I , протекающий через лампочку.
Решение
Решение P=IVP=IV для тока и подстановка заданных значений напряжения и мощности дает
19,51P=IVI=PV=60 W120 V=0,50 A.P=IVI=PV=60 W120 V=0,50 A.
Таким образом, через лампочку проходит полампера, когда на нее подается напряжение 120 В.
Обсуждение
Это значительный ток. Напомним, что бытовая электроэнергия является переменным, а не постоянным током, поэтому 120 В, подаваемые из бытовых розеток, представляют собой переменную, а не постоянную мощность. 120 В — это фактически усредненная по времени мощность, выдаваемая такими розетками. Таким образом, средний ток, проходящий через лампочку за период времени, превышающий несколько секунд, составляет 0,50 А.
Пример работы
Грелки для ботинок
Чтобы согреть ботинки в холодные дни, вы решили вшить в стельку ботинок схему с несколькими резисторами. Вам нужно 10 Вт тепла от резисторов в каждой стельке, и вы хотите питать их от двух 9-вольтовых батарей (соединенных последовательно). Какое общее сопротивление вы должны оказывать на каждую стельку?
СТРАТЕГИЯ
Мы знаем желаемую мощность и напряжение (18 В, потому что у нас есть две 9-вольтовые батареи, соединенные последовательно), поэтому мы можем использовать уравнение P=V2/RP=V2/R, чтобы найти необходимое сопротивление .
Решение
Решая P=V2/RP=V2/R для сопротивления и подставляя данные напряжения и мощности, мы получаем
19,52P=V2RR=V2P=(18 V)210 W=32 Ω. P=V2RR =V2P=(18 В)210 Вт=32 Ом.
Таким образом, общее сопротивление в каждой стельке должно быть 32 Ом.Ом.
Обсуждение
Посмотрим, какой ток будет проходить по этой цепи. К сопротивлению 32 Ом приложено напряжение 18 В, поэтому закон Ома дает0005
Все аккумуляторы имеют этикетки, на которых указано, сколько заряда они могут обеспечить (в пересчете на ток, умноженный на время). Типичная щелочная батарея 9 В может обеспечить заряд 565 мА⋅чмА⋅ч. (таким образом, две батареи 9 В обеспечивают 1130 мА⋅чмА⋅ч), поэтому эта система отопления будет работать в течение времени
19,54t=1130×10−3 A⋅ч0,56 A=2,0 ч.t=1130×10−3 А⋅ч0,56 А=2,0 ч.
Рабочий пример
Мощность через ветвь цепи
Сопротивление каждого резистора в схеме ниже составляет 30 Ом. Какая мощность рассеивается на средней ветви цепи?
СТРАТЕГИЯ
Средняя ветвь схемы содержит последовательно соединенные резисторы R3 и R5R3 и R5. Напряжение на этой ветви равно 12 В. Сначала мы найдем эквивалентное сопротивление в этой ветви, а затем, используя P=V2/RP=V2/R, найдем мощность, рассеиваемую в ветви.
Решение
Эквивалентное сопротивление равно Rmiddle=R3+R5=30 Ω+30 Ω=60 ΩRmiddle=R3+R5=30 Ω+30 Ω=60 Ω. Мощность, рассеиваемая средней ветвью цепи, составляет
19,55Pmiddle=V2Rmiddle=(12 В)260 Ом=2,4 Вт.Pmiddle=V2Rmiddle=(12 В)260 Ом=2,4 Вт.
Обсуждение
Давайте посмотрим, сохраняется ли энергия в этой цепи, сравнив мощность, рассеиваемую в цепи, с мощностью, выдаваемой батареей. Во-первых, эквивалентное сопротивление левой ветви равно
19,56Rleft=11/R1+1/R2+R4=11/30 Ом+1/30 Ом+30 Ом=45 Ом.Rleft=11/R1+1/R2 +R4=11/30 Ом+1/30 Ом+30 Ом=45 Ом.
Мощность через левую ветвь равна
19,57Pleft=V2Rleft=(12 В)245 Ом=3,2Вт.Pleft=V2Rleft=(12 В)245 Ом=3,2 Вт. эквивалентное сопротивление равно Rright=R6=30 ΩRright=R6=30 Ω. Мощность через правую ветвь равна
19,58Pright=V2Rright=(12 В)230 Ом=4,8Вт. Pright=V2Rright=(12 В)230 Ом=4,8 Вт
Полная мощность, рассеиваемая цепью, представляет собой сумму мощностей, рассеиваемых в каждой ветви .
19.59P=Pleft+Pmiddle+Pright=2.4 W+3.2 W+4.8 W=10.4 WP=Pleft+Pmiddle+Pright=2.4 W+3.2 W+4.8 W=10.4 Вт
19.60P=IV.P=IV.
, где I — общий ток, протекающий через батарею. Поэтому мы должны сложить токи, проходящие через каждую ветвь, чтобы получить я . Ответвления вносят токи
19,61Ileft=VRleft=12 V45 Ω=0,2667 AImiddle=VRmiddle=12 V60 Ω=0,20 AIright=VRright=12 V30 Ω=0,40 AIleft=VRleft=12 V45 6Ω=6Ω 12 V60 Ом=0,20 AIright=VRright=12 V30 Ω=0,40 A. =0,2667 A+0,20 A+0,40 A=0,87 A.
и мощность, обеспечиваемая аккумулятором, равна
19,63P=IV=(0,87 A)(12 В)=10,4 W.P=IV=(0,87 A)(12 В)=10,4 Вт.
Это та же мощность, которая рассеивается на резисторах цепи, что показывает сохранение энергии в этой цепи.
Практические задания
Какова формула для мощности, рассеиваемой на резисторе?
- Формула для мощности, рассеиваемой на резисторе: P=IV.
P=IV.
- Формула для мощности, рассеиваемой на резисторе: P=VI.P=VI.
- Формула для мощности, рассеиваемой на резисторе: P = IV .
- Формула для мощности, рассеиваемой на резисторе: P = I 2 В .
Какова формула для мощности, рассеиваемой резистором, при заданном его сопротивлении и напряжении на нем?
- Формула мощности, рассеиваемой на резисторе: P=RV2P=RV2
- Формула мощности, рассеиваемой на резисторе: P=V2RP=V2R
- Формула мощности, рассеиваемой на резисторе: P=V2RP=V2R
- Формула мощности, рассеиваемой на резисторе: P=I2RP=I2R
Проверьте свое понимание
Упражнение 8
Какие элементы схемы рассеивают мощность?
- конденсаторы
- катушки индуктивности
- идеальные переключатели
- резисторы
Упражнение 9
Объясните словами уравнение для мощности, рассеиваемой на данном сопротивлении.