Плотность керамзита: Удельный вес керамзита — вес куба керамзита. Вес 1м3 керамзита и его плотность

Содержание

Удельный вес керамзита — вес куба керамзита. Вес 1м3 керамзита и его плотность

   Керамзит, сегодня, является одним из главных компонентов для изготовления бетона. Обусловлено это тем, что данный вид материала увеличивает теплоизоляцию и повышает долговечность бетона. Однако, строительство качественных и надежных конструкции подразумевает наличие точных вычислений. Сделать последнее без анализа характеристик строительных материалов невозможно. Поэтому, для правильного приготовления, крайне важно точно знать, каков вес керамзита.

   Под значением удельного веса керамзита понимается отношение веса твердых сухих частиц к их объему. Этот параметр зависит от нескольких характеристик:

— Размер зерна керамзита. От размера фракции удельный вес керамзита изменяется: чем больше зерна – тем меньше будет удельный вес. Проследить это можно на примере керамзита марки плотности м600 в таблице №1.

Удельный вес и вес керамзита в зависимости от вида и фракции
Вид керамзитаУдельный вес (г/см3)Вес керамзита в 1 м3 (кг)
Фракция 0 – 5 мм, песок керамзитовый0,55 – 0,6550 — 600
Фракция 5 – 10 мм0.4 – 0,45400 – 450
Фракция 10 – 20 мм0,35 – 0,4350 – 400
Фракция 20 – 40 мм0,25 – 0,35250 — 350

Таблица веса куба керамзита в зависимости от его плотности.

— Марка плотности. В зависимости от марки плотности по ГОСТу удельный вес м3 керамзита, также отличается: чем больше плотность керамзита, тем больше вес материала в общем. Это можно проследить, а также узнать приблизительный вес мешка керамзита по марке плотности в таблице №2.

— Плотность керамзита. Более плотные марки будут иметь значение удельного веса выше чем значение, меньшого по прочности керамзита, в следствии низкой пористости. ГОСТ также устанавливает различные марки прочности. Для вычисления по прочности, а также веса мешка поможет таблица №3.

Удельный вес и вес мешка керамзита в зависимости от марки
Марка плотности/Марка прочностиУдельный вес (г/см3)Вес мешка керамзита (42 л)
М250 / П-250,2 – 0,258,4 – 10,5
М300 / П-30, П-500,25 – 0,310,5 – 12,6
М350 / П-500,3 – 0,3512,6 – 14,7
М400 / П-500,35 – 0,414,7 – 16,8
М450 / П-75, П-1000,4 – 0,4516,8 – 18,9
М500 / П-100, П-1250,45 – 0,518.9 – 21
М600 / П-125. П-1500,5 – 0,621 – 25,2
М700 / П-150, П-2000,6 – 0,725,2 29,4
М800 / П-2000,7 – 0,829,4 – 33,6
М900 / П-2000,8 -0,933,6 -37,8
М1000 / П-2000,9 – 137,8 – 42
М1100 / П-2001 – 1,142 – 46,2
М1200 / П-2001,1 – 1,246,2 — 50,4

 

Средние значения удельного веса керамзита в зависимости от его марки.

   Из вышесказанного следует, что определить точный удельный вес м3 керамзита практически невозможно, слишком много зависит от точных характеристик материала.

   Однако, среднее значение установить достаточно просто. Усредненный показатель керамзита в общем составляет 400 кг/м3 или 0.4 г/см3, вес мешка при этом выходит ~16.8 кг. При подсчете числовых показателей для каждой фракции можно составить таблицу определенных значений:

  • Керамзит фракции 0-5 ~600 кг/1м3 или ~0.6 т/1м3
  • Керамзит фракции 5-10 ~450 кг/1м3 ~0.45 т/1м3
  • Керамзит фракции 10-20 ~400 кг/1м3 ~0.4 т/1м3
  • Керамзит фракции 20-40 ~350 кг/1м3 ~0.35 т/1м3
  •   Однако эти числа являются сугубо приблизительные, вычисляются без учета марки плотности, прочности и дают того значения для точного определения количества материала, но дают примерное представление веса в целом.

    Смотри так же:

    — область применения керамзита

    насыпная и истинная, от чего зависит, фракции, цены

    Керамзит – это сыпучий строительный материал с пористой структурой. Выпускается в виде песка – 0,1-5 мм, гравия и щебня фракциями 5-10, 10-20 и 20-40. Производится из сортов глины, способных вспучиваться при крайне высоких температурах за короткое время. В результате сильного нагрева происходит выделение газов. Именно благодаря ним в керамзите появляются поры, которые и обеспечивают ему хорошие теплоизоляционные характеристики.

    Применяется он для утепления и изготовления бетонных конструкций (стяжки, керамзитобетон). Используется для пола, фундаментов, перекрытий, крыш и много другого. Так как он делается из природного сырья, то является экологически безопасным для человека и окружающей среды. Также благодаря производству керамзита из глины, он устойчив к огню и не поддерживает горение. Гравий имеет округлую форму, а щебень – угловатую.

    Положительные характеристики:

    • Морозоустойчивость. Керамзитовый щебень способен выдерживать до 50 циклов замораживания и оттаивания. Его можно применять в суровых климатических условиях.
    • Небольшой вес. Гранулы керамзита, особенно низких марок, содержат множество пор. Поэтому он имеет небольшой вес. В итоге при утеплении кровель и полов не создается большой нагрузки на фундамент здания.
    • Звукоизоляция. Керамзит хорошо поглощает шумы. Благодаря чему стены и перегородки, построенные из него, не требуют дополнительной звукоизоляции.
    • Керамзит имеет низкий коэффициент теплопроводности – 0,1-0,18 Вт/м·К.
    • На керамзитовом щебне не может расти плесень и грибки, также он не боится кислот и других химических средств.
    • Имеет длительной срок эксплуатации.

    Что такое плотность и ее виды

    По плотности керамзита определяется его качество и сфера применения. Также она показывает, какое количество материала вмещается в емкость объемом 1 м3. Изменяется этот показатель в зависимости от размера фракций керамзита. Чем крупнее гранулы, тем плотнее укладывается. На плотность влияет способ производства. Существует несколько технологий изготовления:

    • Сухой.
    • Мокрый.
    • Пластический.
    • Порошково-пластический.

    Для каждого метода разработаны разные способы вспучивания сырья. В результате изготавливается материал различной плотности. Выбор способа зависит от качества сырья. Сухой – наиболее простой и применяется в том случае, если глина однородна и не содержит примесей. Камни глины дробятся, просеиваются и отправляются в печь. Ее влажность не должна быть больше 9%.

    Чаще всего применяется пластический. В этом случае используется увлажненная глина, которую формируют в гранулы. После чего она отправляется в печь. Качество зависит от формы и от того, насколько гранулы уплотнены. Влажность глины для формовки должна быть от 18 до 28%. Порошково-пластический метод происходит так же, как и предыдущий способ производства. Но сначала глину дробят до состояния порошка, после чего увлажняют и придают форму гранул.

    Насыпная плотность – это и есть марка керамзита. Обозначается буквой М и числом, например, М500 означает, что 1 м3 весит 451-500 кг. Керамзит изготавливается марок от М250 до М800, всего 10 видов. Может быть и М900-М1000, но производится такой материал обычно только на заказ. К маркам М500-М1000 относится керамзитовый песок. Он имеет наибольшую насыпную плотность за счет очень мелких частиц. Гравий или щебень выпускается от М250 до М450. Их насыпная или удельная плотность меньше.

    Каждая марка имеет свою определенную сферу применения. Низкие марки керамзита по насыпной плотности имеют лучшие теплоизоляционные характеристики. Именно их подбирают для утепления кровли и пола. Низкомарочный керамзит фракцией 20-40 предназначен для теплоизоляции оснований, подвалов, кровель. Также он популярен в ландшафтном дизайне. Керамзит с маленькой плотностью фракцией 10-20 подойдет для утепления кровель, полов, стен, коммуникационных систем, фасадов. Также может быть использован в качестве наполнителя для легких бетонов. Сыпучий стройматериал размером 0,1-4 и 5-10 предназначен для изготовления кладочных растворов, цементных стяжек и в гидропонике. Часто выбирают его и для декоративных целей.

    Плотность керамзита измеряется не только насыпным методом, но и истинным объемным весом. По этой характеристике определяется вес гравия или щебня без воздушных зазоров между гранулами. Поэтому показатели насыпной и истинной плотности всегда будут отличаться. Причем в первом случае результат может быть разным. Истинная плотность керамзита – величина всегда постоянная. Измерить ее точно выйдет только в лабораторных условиях.

    Удельный вес керамзитового щебня в зависимости от размера фракций:

    • 0,1-5 (песок) – 0,55-0,6 г/м3;
    • 5-10 – 0,4-0,45 г/м3;
    • 10-20 – 0,35-0,4 г/м3;
    • 20-40 – 0,25-0,35 г/м3.

    Стоимость и рекомендации

    Цена на керамзит для утепления стяжки пола или крыши зависит от удельной плотности и производителя. Чем плотнее, тем дороже гравий или щебень. Также на стоимость влияет объем закупаемого материала. Если купить большую партию, то цена будет заметно ниже. Брать гравий или щебень выгоднее навалом. В мешках фасуется по 25 и 50 кг.

    Таблица со средними ценами, по которым можно купить керамзит для стяжки пола или других целей разных фракций:

    В мешках по 50 лЦена за 1 мешок, рубли
    10-20110
    20-40105
    5-10140
    НаваломЦена за 1 м3, рубли
    5-102000
    10-201850

    Наиболее популярным является керамзитовый гравий фракцией 10-20, так как его можно использовать для утепления практически любых конструкций. При соблюдении технологии теплоизоляции керамзит способен сократить теплопотери здания на 60-75 %.

    Выбирая керамзитовый щебень для утепления пола на грунте, следует учитывать, что он способен впитывать в себя влагу. Поэтому обязательно потребуется монтаж гидроизоляции, так как намокший керамзит высыхает крайне долго. Из-за избыточной влаги он будет легко пропускать тепло.

    По той же причине не рекомендуется использовать с низкой удельной плотностью керамзит для заливки в бетонные стяжки, так как в поры проникнет вода из цементного раствора. В этом случае наличие керамзита как утеплителя не сыграет никакой роли. Для обустройства стяжки пола толщиной до 3 см применяются фракции 5-10 и 10-20. Если будет больше 4 см, то можно выбирать щебень с насыпной плотностью 250-350 кг/м3.

    Покупая керамзит в мешках, следует обращать внимание на его состояние. Он должен быть чистым. Если мешок в пыли, то это признак низкокачественного материала, где немалая его часть разрушена. Допускается наличие в каждой фракции гранул других размеров, но не больше 5 % более крупных и 5 % – мелких.

    Плотность керамзита разных фракций, характеристики, цена за м3

    Керамзит по объемам продаж уже догоняет кирпич и цемент, при этом его производство постоянно растет. Только кажется, что применяется он редко. А все потому, что где его увидишь в открытую, если материал либо в составе легких бетонов, либо в утеплении перекрытий? Достоинства: экологичен, легко переносит любые природные условия, огнестоек и не гниет, то есть качества для стройки нужные.

    Оглавление:

    1. Плотность разных марок
    2. Фракции керамзита
    3. Сфера использования
    4. Цена за м3

    Характеристика плотности

    Неправильно было бы оценивать эту величину только по школьной формуле, где массу следовало бы разделить на объем. Ведь этот материал ― насыпной, а геометрия гранул самая разная, как и количество пор, следовательно, показатели будут сильно отличаться. Поэтому для расчётов и для удобства применяется несколько параметров.

    Насыпная плотность ― одна из важнейших характеристик при использовании керамзита. Определяется эта величина засыпкой продукта в единицу объема с последующим взвешиванием. То есть, если в 1 м3 поместилось 500 кг шариков, то насыпная плотность будет равна 500 кг/м3, а марка ― М500.

    Истинная плотность керамзита характеризует массу сухого вещества в единице объема, если из него удалить пустоты между шариками и поры внутри, это то, что рассчитывалось по школьной формуле, как удельный вес. Но есть еще и удельная плотность керамзита, которая определяется только без пустот между гранулами. Разница между ними в том, что первая ― величина постоянная, вторая ― переменная, зависящая от размеров частиц.

    МаркаНасыпная плотность, кг/м3
    М250250 и меньше
    М300250-300
    М350300-350
    М400350-400
    М450400-450
    М500450-500
    М600500- 600
    М700600-700
    М800700-800
    М900800-900
    М1000900-1000

    И еще: если 1 м3 имел массу, к примеру, 310 кг, то марка всё равно будет М350, то есть в сторону увеличения. Методы округления в этой ситуации в расчет не принимаются. Понятно, что чем меньше пор и пустот будет в стройматериале, тем он тяжелее. Это возможно в том случае, если частицы небольшие. То есть получается обратно пропорциональная зависимость: чем меньше геометрические размеры элементов сыпучих и пористых материалов, тем выше показатели плотности керамзита. Наоборот, керамзит с маленькой плотностью имеет большие гранулы.

    Фракции утеплителя

    Зерна материала изначально имеют разную величину. После просеивания через сита зерна разделяются на керамзитовый песок (песком считаются частицы менее 5 мм) и керамзитовый гравий трех размеров:

    • малый ― 5-10 мм;
    • средний ― 10-20;
    • крупный ― 20-40.

    Песок получают либо обжигом глинистой мелочи, либо из остатков дробления крупных частиц гравия на щебень. Размер щебня 5-40 мм, но форма уже не окатанная, как у гравия, а угловатая.

    Таким образом, материал поступает на строительный рынок в трех фракциях: как песок, гравий и щебень. От размера гранул в большой степени зависят плотность и прочность получаемых легких бетонов. Правильный подбор гранул снижает расход цемента, так как малые заполняют пустоты между крупными. Но нельзя, чтобы отношение самой большой гранулы к наиболее малой превышало 1,5. В этом случае прочность бетона уменьшается на четверть.

    Применение в строительстве

    Керамзитовый песок. Для производства бетонных облегченных блоков. Сила его сцепления с раствором за счет шероховатой поверхности велика, а высокая плотность увеличивает прочностные характеристики блоков. Также он может подойдет вместо обычного песка для стяжек на пол даже под линолеум. Стяжка будет достаточно плотной, прочной и ровной. И для утепления пола используют керамзит мелкий, песчаный. Трубопроводы водяного и теплового снабжения обустраивают (пересыпают) также мелким керамзитом. Есть такое свойство, как сыпучесть, способность заполнить пустые пространства между трубами.

    Гравий из керамзита. Обладает плотностью меньшей, чем у песка, но ввиду разнокалиберности параметров применение более обширно. Часто используют такой керамзит для пола, то есть его заливки, особенно с гранулами 5-10 мм. Подходит также такой размер частиц керамзита для стяжки пола под любые напольные покрытия. Если нужна стяжка на пол большей толщины, то понадобится гравий большей величины. Если частицы 10-20 мм ― это хороший керамзит для засыпки перекрытий, утепления межпотолочного пространства. Вот примерная таблица для гравия разных фракций:

    КонструкцияФракция керамзита, мм
    Крыши и кровли10-20
    Межэтажные перекрытия4-10
    Полы, уложенные на грунт10-20
    Геотехнические10-20

    Керамзитовый щебень. Он является вторичным продуктом керамзитового гравия. Поэтому, если позволяют размеры и угловатая форма, можно использовать его точно так же, как и гравий: в потолочных перекрытиях, кровлях, подвалах, полах чердаков. Но чаще всего его применяют для утепления фундаментов, так как это единственный среди щебней с пористой структурой. Гравий с гранулами 20-40 мм имеет наименьшую плотность, поэтому теплоизолирующие свойства высоки. Но из-за больших размеров частиц такой материал применяют для термоизоляции пола, находящегося прямо на грунте, или крыш.

    Стоимость

    На стоимость стройматериала влияют трудовые, сырьевые, энергетические затраты. Но в формировании цены также важен спрос. А спрос зависит от эксплуатационных свойств и качеств этого материала. Посмотрим, из чего складываются расценки на керамзит. Сырье для производства стоит сравнительно недорого. Но трудо- и энергозатраты довольно велики.

    Чем крупнее будут гранулы, тем меньше плотность. Теплоизоляционные качества возрастают, но, парадокс, цена уменьшается. А причина в том, что истинный объемный вес мелкого песка больше, нежели гравия.

    Как лучше купить: навалом или в мешках? Зависит от конкретного случая. Фасованные в мешки гранулы приобретаются при малых потребностях, для больших строек экономичней купить навалом. Иначе приходится платить еще и за мешки: много мешков ― много выброшенных денег. Расфасовывают гранулы как в обычные мешки объемом 0,04-0,05 м3, так и в мешки МКБ емкостью 1 м3.

    Также расценки еще зависят от объемов покупки. Первое правило опта: большая партия ― меньшая цена. Естественно, продукция разных заводов по стоимости может отличаться. Близость сырья, источников энергии и мест потребления удешевит товар.

    Средние цены на керамзитовую продукцию:

    Фракция керамзитаЦена, рубли за м3

    Песок

    россыпью1 300 – 1 600
    фасованный МКБ1 500 – 1 800

    Гравий россыпью

    5-10 мм1 500
    10-20 мм1 000
    20-40 мм1 000

    Таким образом, плотность – важная характеристика керамзита. Она влияет на тепло- и шумоизоляцию, прочность бетонов, нагрузку на фундамент, стоимость материала.

    Полезная информация

    Плотность керамзита

    Плотность керамзита зависит от величины его зерен. Чем крупнее гравий, тем меньше его насыпная плотность. Это связано с тем, что керамзит крупной фракции включает более вспученные при обжиге гранулы. По насыпной плотности керамзит делят на десять марок – от 100 до 600 кг/м3. И именно этот показатель помогает определить расход керамзита при планировании строительного проекта.

    Удельный вес керамзита

    Удельный вес любого вещества не является постоянной величиной и зависит от места и условий его измерения. Таким образом, точно узнать, сколько весит керамзит, можно только путем его взвешивания в данный момент и в конкретных условиях хранения или применения. В среднем удельный вес керамзита составляет 200-350 кг/м3.

    Для этого показателя также используют термин «объемный вес керамзита», так как он показывает вес на единицу объема керамзита. Вес мешка керамзита обычно составляет 10-12 кг.

    Коэффициент теплопроводности керамзита

    Показатель теплопроводности гравия может быть разной в зависимости от производителя, качества сырья и технологии изготовления. Среднее значение этого показателя варьируется от 0.08 до 0.14 Вт/(м·К).

    Морозостойкость керамзита

    Для утепления зданий и сооружений часто используют керамзит. ГОСТ требует, чтобы показатель морозостойкости не был ниже 15. Это означает, что гравий может выдержать 15 циклов в условиях низких температур. Производители обычно выдерживают этот стандарт.

    Прочность керамзита

    Прочность определяют путем сдавливания керамзита специальным прибором – пуансоном на конкретную глубину. При этом фиксируется величина напряжения, которая и считается условной прочностью гравия. Также прочность керамзита можно узнать путем сдавливания прессом его отдельных гранул. Керамзит высокого качества обладает, как правило, высокой прочностью.

    Насыпная плотность керамзита — особенности насыпной плотности

    Насыпная плотность керамзита определяется особенностями его производства, а также размером фракции. Наблюдается закономерность: чем меньше размер фракции – тем больше насыпная плотность. Наиболее тяжелым получается керамзитовый песок, наиболее легким – керамзитовый гравий с гранулами больших размеров.

    Некоторые особенности насыпной плотности керамзита

    Насыпная плотность керамзита – параметр, который можно регулировать настройками процесса производства этого строительного материала. В зависимости от способа обработки глины, плотность может быть большей или меньшей.

    Насыпная плотность варьируется в диапазоне от 200 до 1000 кг/м3. Согласно стандартам, керамзит по этому показателю делится на марки. Так, марка М250 включает в себя керамзит насыпной плотностью до 250 кг/м3, М300 – 250-300 кг/м3, М1000 – 900-1000 кг/м3.

    Наиболее тяжелым по насыпной плотности является керамзитовый песок. Кубический метр этого вида керамзита весит от 500 до 1000 кг. Насыпной вес керамзитового гравия зависит от фракции:

    • фракция от 5 до 10 мм – 400-450 кг/м3;
    • фракция от 10 до 20 мм – 350-400 кг/м3;
    • фракция от 20 до 40 мм – 200-350 кг/м3.

    Один куб керамзитового щебня, размер гранул которого находится в пределах от 5 до 40 мм, может весить от 200 до 500 кг.

    Если речь идет о сравнении керамзита той же фракции, то чем меньше насыпная плотность, тем выше качество материала. Легкий керамзит лучше тяжелого в первую очередь по степени теплопроводности.

    Заключение

    Практическое значение знания насыпной плотности керамзита – это оперативное определение его фракции. Зная насыпную плотность, можно легко узнать преобладающую в данной партии фракцию материала.

    Похожие материалы:

    Удельный вес керамзита — кг на м3

    Керамзитом называют строительный материал, используемый в качестве утеплителя и для приготовления легких марок бетона. В зависимости от формы гранул и их среднего размера различают три вида керамзита:

    1. песок с размером гранул до 5 мм, используемый для приготовления бетона;
    2. гравий с гранулами округлой формы размером до 40 мм для изготовления бетона, легкобетонных блоков и как теплоизоляционный материал;
    3. щебень с гранулами размером до 40 мм преимущественно угловатой формы, используемый для звукоизоляции, создания бетона и бетонных конструкций.

    Удельный вес керамзита

    Для приобретения керамзита, расчета нагрузок на строительные конструкции, создаваемые с его использованием, и в процессе изготовления керамзитобетона необходимо знать вес керамзита. Он зависит от множества факторов, даже от влажности воздуха (чем она выше, тем большим будет вес керамзита). В нормативной литературе имеются таблицы, в которых можно найти удельный вес керамзита в кг/м3 для разных фракций, вычисленный как результат деления величины веса его гранул на занимаемый ими объем. Знание этого параметра позволяет определять сколько весит 1 м3 керамзита. На практике используется два значения удельного веса:

    1. для керамзита;
    2. для керамзитобетона.

    Плотность керамзита

    Сколько в одном кубе керамзита килограмм определить можно по значению его насыпной плотности, то есть по маркировке. В зависимости от величины этого параметра керамзит разных фракций подразделяют на 10 марок. К примеру, для керамзита марки М400 насыпная плотность равняется 400 кг/м3. Значит, масса керамзита в 1 м3 приблизительно равна 400 кг. А для керамзита марки М600 с максимальным значением насыпной плотности в 600 кг/м3 вес 1 м3 будет равняться 600 кг. Получается, что узнать сколько керамзита в 1 м3 можно без измерений и использования нормативных данных — достаточно знать его маркировку. Следует понимать, что чем больше марка керамзита, тем выше его прочность, так как увеличение удельного веса связано с повышением плотности, а с ростом плотности увеличивается и прочность.

    Объемный вес керамзита

    Продажа керамзита осуществляется россыпью или в мешках, а в качестве единицы измерения используется один кубометр. Зная, сколько весит куб керамзита, можно легко определить вес одного мешка или всей реализуемой партии керамзита. Для расчета требуемого объема используются следующие значения объемного веса для различных фракций керамзита:

    • 600 кг для гранул с размерами до 5 мм;
    • 450 кг для керамзита с размерами гранул до 10 мм;
    • 400 кг, если размер гранул не превышает 20 мм;
    • 350 кг для керамзита с максимальными размерами гранул (до 40 мм).

    Где купить керамзит?

    Зная, сколько весит 1 м3 керамзита, можно точно рассчитать нужный объем и заказать его приобретение в нашей компании. Мы предлагаем покупать керамзит у нас, так как его качество соответствует всем требования ГОСТа 9757 от 1990 г. и 32496 от 2013 г. Мы реализуем керамзит самовывозом или транспортом нашей компании, россыпью, в мешках или в биг бегах. Звоните и заказывайте доставку.

    Истинная и удельная плотность керамзита

    В основе производства керамзита лежит обжиг легкоплавких пород глины при определенных температурных условиях, вследствие чего глина вспучивается, и получают гранулы керамзита. В зависимости от режима обработки глины плотность керамзита будет отличаться. Различают следующие режимы обработки:

    • сухой;
    • мокрый;
    • порошково-пластический;
    • пластический.

    Поскольку плотность керамзита не отличается высокими показателями, прочность изготавливаемых из нее керамзитобетонных блоков и других строительных материалов также находится на более низком по сравнению с аналогами значениями. Правда, механическая прочность от низкой прочности не зависит, поэтому керамзит любой марки отличается высокой механической прочностью.

    Наиболее важная характеристика при выборе керамзита, как легкого пористого материала, является насыпная плотность.

    Как определяется насыпная плотность керамзита и на что она влияет?

    Плотность керамзитового гравия определяют путем взвешивания этого материала в таре, после чего полученный результат делят на объем использованной тары. Так получают насыпную плотность керамзита, при этом, чем она ниже, тем выше его показатели качества. В зависимости от плотности керамзита в соответствии с ГОСТ 9757-90 разделяют на несколько марок:

    МаркаПлотность, кг/м3
    М250250
    М300250-300
    М350300-350
    М400350-400
    М450400-450
    М500450-500
    М600500-600

    Его плотность свидетельствует о том, что в одном кубометре объема вес керамзита составляет, например, для марки М250 – 250 кг. Марки с более высокой насыпной плотностью выпускаются под заказ. Такая градация справедлива для керамзитового гравия, тогда как для керамзитового песка плотность указывается, начиная от минимальной марки М500 и заканчивая максимальной М1000. При одинаковом размере фракций и одном и том же объеме качество будет выше у того керамзита, который будет иметь меньший вес. На показатели качества керамзита влияние будут оказывать используемые в процессе производства сорта глины и точность соблюдения технологического процесса изготовления этого материала. Следовательно, при выборе керамзита плотность и вес кубометра будут иметь определяющее значение, даже в случае приобретения керамзита в мешках.

    Следует различать истинную плотность керамзита и его удельную плотность. Истинная плотность керамзита показывает массу единицы объема в плотном состоянии, она используется для определения удельной плотности данного сыпучего строительного материала. Истинная плотность – величина постоянная, тогда как удельная плотность керамзита – переменная. Для керамзитового гравия она колеблется в пределах от 450 до 700 кг/м3, для керамзитового щебня варьируется между значениями 600 и 1000 кг/м3, а для сухой керамзитобетонной смеси она составляет 800 кг/м3.

    Всё о керамзите

    © 2014-2015 Granitresurs

    ГЛИНА ОБЛЕГЧЕННАЯ И СЛАНЦЕВЫЕ ЗАПОЛНИТЕЛИ

    LES GRANULATS LEGERS D’ARGILE ET DE SCHISTE РАСШИРЯЕТ

    Приведены подробные сведения об использовании и производстве легкого керамзита и сланцевых заполнителей. Образование небольших полостей внутри агрегатов происходит между 1100 и 1200 градусами. Это явление обусловлено присутствием в глине минеральных ингредиентов, которые вызывают газообразные выбросы при температуре, превышающей температуру плавления глины или равной ей, и возникновением фазы плавления с достаточной вязкостью для улавливания выделяемых газов.Приведены данные о сырье, используемом в производстве (в основном, глине и сланце), и наиболее удовлетворительных характеристиках. Описаны технологические аспекты производства: подготовка материалов, сушка, обжиг, а также основные характеристики: насыпная плотность (от 250 до 900 кг / м3), коэффициент водопоглощения (менее 15%), химический состав (спецификация: составляется и будет ограничивать содержание серы). Проводятся исследования по изучению методов измерения механической прочности.Рассмотрены основные применения. / TRRL /

    • Наличие:
    • Корпоративных авторов:

      Editeur Dunod

      26 Boulevard de l’Hopital
      Paris 5e, Франция
    • Авторов:
    • Дата публикации: 1972-6

    Язык

    Информация для СМИ

    Предмет / указатель терминов

    Информация для подачи

    • Регистрационный номер: 00099620
    • Тип записи: Публикация
    • Агентство-источник: Центральная лаборатория мостов и домов (LCPC)
    • Файлы: ITRD, TRIS
    • Дата создания: 18 ноября 1975 г., 00:00

    % PDF-1.5 % 1 0 obj> эндобдж 2 0 obj> эндобдж 3 0 obj> / Метаданные 741 0 R / Pages 6 0 R / StructTreeRoot 361 0 R >> эндобдж 4 0 obj> эндобдж 5 0 obj> эндобдж 6 0 obj> эндобдж 7 0 obj> эндобдж 8 0 obj> эндобдж 9 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 0 / Tabs / S> > эндобдж 10 0 obj> эндобдж 11 0 obj> эндобдж 12 0 obj> эндобдж 13 0 obj> эндобдж 14 0 obj> эндобдж 15 0 obj> эндобдж 16 0 obj> эндобдж 17 0 obj> эндобдж 18 0 obj> эндобдж 19 0 obj> эндобдж 20 0 obj> эндобдж 21 0 obj> эндобдж 22 0 obj> эндобдж 23 0 obj> эндобдж 24 0 obj> эндобдж 25 0 obj> эндобдж 26 0 obj> эндобдж 27 0 obj> эндобдж 28 0 obj> эндобдж 29 0 obj> эндобдж 30 0 obj> эндобдж 31 0 объект> эндобдж 32 0 obj> эндобдж 33 0 obj> эндобдж 34 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 1 / Tabs / S >> эндобдж 35 0 obj> эндобдж 36 0 obj> эндобдж 37 0 obj> эндобдж 38 0 obj> эндобдж 39 0 obj> эндобдж 40 0 obj> эндобдж 41 0 объект> эндобдж 42 0 obj [45 0 R] эндобдж 43 0 obj> эндобдж 44 0 obj> эндобдж 45 0 obj> эндобдж 46 0 obj> эндобдж 47 0 obj> эндобдж 48 0 obj> эндобдж 49 0 obj> эндобдж 50 0 obj> эндобдж 51 0 obj> эндобдж 52 0 obj> эндобдж 53 0 obj> эндобдж 54 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 2 / Tabs / S >> эндобдж 55 0 obj> эндобдж 56 0 obj> эндобдж 57 0 obj> эндобдж 58 0 obj> эндобдж 59 0 obj> эндобдж 60 0 obj> эндобдж 61 0 объект> эндобдж 62 0 obj> эндобдж 63 0 obj> эндобдж 64 0 obj> эндобдж 65 0 obj> эндобдж 66 0 obj> эндобдж 67 0 obj> эндобдж 68 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 3 / Tabs / S >> эндобдж 69 0 obj> эндобдж 70 0 obj> эндобдж 71 0 объект> эндобдж 72 0 obj> эндобдж 73 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / XObject >>> / StructParents 4 / Tabs / S >> эндобдж 74 0 obj> эндобдж 75 0 obj> эндобдж 76 0 obj> эндобдж 77 0 obj> эндобдж 78 0 obj> эндобдж 79 0 obj> эндобдж 80 0 obj> эндобдж 81 0 объект> эндобдж 82 0 объект> поток xSWsNUSuN ծ / B $ H «& ƘHVUĄEEAQ I8 «(rs0̅

    Коричневые грубые и угловые легкие керамзитовые агрегаты,

    LECA (легкий наполнитель из вспененной глины) представляет собой заполнитель, полученный путем вспучивания глины при средней температуре 1200 ° C во вращающейся печи.При этой температуре текучие газы расширяются за счет тысяч маленьких пузырьков, которые создают множество пустот и сот в этом агрегате из-за структуры оболочки, когда расплавленный материал становится холодным. Leca имеет приблизительно круглую форму снаружи или форму картофеля из-за кругового движения на производственной линии вращающейся печи.

    LECA обычно производится от 0,1 мм до 25 мм и поставляется в различных диапазонах размеров, среди которых некоторые из обычных классов составляют (0-4) мм, (4-10) мм, (10-25) мм и 0-25. мм со средней плотностью 510, 330, 250 и 280 кг / м3.Валун LECA — это более крупный валун LECA размером 100-500 мм и плотностью 500 кг / м3. Некоторые из преимуществ глиняного заполнителя: легкость, теплоизоляция за счет низкого коэффициента проводимости, звукоизоляция за счет высокого акустического сопротивления, влагонепроницаемость, несжимаемость при постоянном давлении и гравитационных нагрузках, отсутствие разложения в тяжелых условиях, огнестойкость, Ph около 7, Устойчивость к замерзанию и плавлению, легкость перемещения и транспортировки, легкая засыпка и отделка, снижение статической нагрузки конструкции и боковой нагрузки при землетрясении, идеальная сладкая почва для растений, лучший материал для дренажа и фильтрации.

    Его легкость обусловлена ​​наличием множества разделенных воздушных пространств внутри и между агрегатами, плотность агрегатов в зависимости от размера колеблется от 380 до 710 кг / м3. Его коэффициент теплопроводности составляет от 0,09 до

    .

    Глиняные агрегаты доступны в различных размерах. Четыре обычных градации: 0–4 мм, 4–10 мм, 10–25 мм и 0–25 мм. Их насыпная плотность в высушенном состоянии и их применение для различных градаций:

    Для использования в легком бетоне, легких блоках, сборных панелях и перекрытиях.Легкий наполнитель, строительный раствор Leca и система очистки воды. Сельское хозяйство и аквакультура. Градация: 0-4 мм Плотность:

    Для легкого бетона, легких блоков, сборных панелей и аквакультуры, украшения. Градация: 4-10 мм и плотность:

    Для легкого бетона с наполнителем, канализации. Ландшафтный дизайн, Сельское хозяйство и аквакультура, Осушение. Градация: 10-25 мм и плотность:

    Пол и крыша с уклоном, легкий наполнитель, дорожное строительство. Градация: 0-25 мм и плотность:

    Также доступна глина Заполнители, специально предназначенные для использования в сельском хозяйстве.

    Мы также поставляем произведенный в Индии LECA со следующими характеристиками:

    Плотность в сухом состоянии: 702,5 кг / м3; Усадка при высыхании: 0,005%; Прочность на сжатие: 5,2 Н / мм2;

    Прочность на изгиб: 1,05 Н / мм2; Теплопроводность: 0,21 Вт / м.к .;
    Звукоизоляция: 47 дБ для стены толщиной 100 мм и 52 дБ для стены толщиной 230 мм.

    Прочность на раздавливание: 2,26 Н / мм2; Водопоглощение: 18,0%; PH: 8,05; Насыпная плотность насыпного: 530 кг / м3; Куски глины: 0,1%; Теплопроводность: 0,10 Вт / мк

    Дополнительная информация

    Код товара ECA01
    Срок поставки 10 дней
    Порт отгрузки Mundra
    Производственная мощность 24000
    Детали упаковки Пакеты по 50 литров и 1 куб. М.

    Экспериментальное определение характеристик прочности на сдвиг легких заполнителей из вспененной глины с использованием испытаний на прямой сдвиг и трехосных испытаний

    Авторов: Махса Шафеи Баджестани, Махмуд Яздани, Алякбар Гольшани

    Аннотация:

    Легкие искусственные заполнители находят широкое применение в промышленности и машиностроении.В настоящее время использование этого материала в инженерно-геологических работах, особенно в качестве засыпки подпорных стен, растет из-за специфических характеристик, которые делают его компетентной альтернативой традиционным геотехническим материалам. На практике материал с меньшим весом, но с более высокими параметрами прочности на сдвиг был бы идеальным в качестве засыпки за подпорными стенками из-за важной роли, которую эти параметры играют в снижении общего активного бокового давления грунта. В этом исследовании исследуются два типа легкого наполнителя из вспененной глины (LECA), производимого на фабрике Leca.LECA производится во вращающейся печи путем нагревания натуральной глины при различных температурах до 1200 ° C с получением квазисферических агрегатов с различными размерами от 0 до 25 мм. Насыпная плотность этих заполнителей составляет от 300 до 700 кН / м 3 . Целью этого исследования является определение поведения напряженно-деформированного состояния, параметров прочности на сдвиг и поглощения энергии материалами LECA. Испытания на прямой сдвиг проводились при пяти нормальных напряжениях 25, 50, 75, 100 и 200 кПа. Кроме того, были проведены традиционные испытания на трехосное сжатие при ограничивающем давлении 50, 100 и 200 кПа для изучения поведения напряженно-деформированного состояния.Результаты экспериментов показывают высокий внутренний угол трения и даже значительную номинальную когезию, несмотря на гранулированную структуру LECA. Эти желательные свойства вместе с присущей этим заполнителям низкой плотностью делают LECA очень подходящим материалом для геотехнических применений. Кроме того, результаты показывают, что легкие заполнители могут иметь высокое поглощение энергии, что является отличным альтернативным материалом в сейсмической изоляции.

    Ключевые слова: Поглощение энергии, трехосный тест, сдвиговые свойства, прямое испытание на сдвиг, керамзит

    Идентификатор цифрового объекта (DOI): doi.org / 10.5281 / zenodo.1315861

    Процедуры APA BibTeX Чикаго EndNote Гарвард JSON ГНД РИС XML ISO 690 PDF Загрузок 811

    Каталожные номера:


    [1] Arioz, O., et al. «Предварительное исследование свойств легкого керамзитового заполнителя». Журнал Австралийского керамического общества 44.1 (2008): 23.
    [2] Столл Р. Д. и Холм Т. А. (1985). «Облегченный заполнитель из расширенного сланца: геотехнические свойства.”Журнал инженерной геологии 111, № 8, 1023–1027.
    [3] Валсангкар, А. Дж., И Холм, Т. А. (1990). «Геотехнические свойства вспученного сланцевого легкого заполнителя». Геотех. Контрольная работа. J., 13 (1), 10–15.
    [4] Сариде, С., Пуппала, А. Дж., Уильямми, Р., и Сиригирипет, С. К. (2009). «Использование легкого ECS в качестве насыпного материала для борьбы с осадками набережных подходов». Журнал материалов в гражданском строительстве, 22 (6), 607-617.
    [5] Puppala, Anand J., et al. «Долговременная работа набережной автомагистрали, построенной из легких заполнителей.«Журнал производительности построенных объектов 31.5 (2017): 04017042.
    [6] Лайне, Лео. «Численное моделирование слоя ослабления ударов земли для шведских спасательных центров и убежищ». Материалы 4-й Азиатско-Тихоокеанской конференции по ударным и ударным нагрузкам на конструкции. 2001 г.
    [7] Ардакани, Алиреза и Махмуд Яздани. «Связь между плотностью частиц и статическими модулями упругости легких керамзитовых заполнителей». Прикладная наука о глине 93 (2014): 28-34.
    [8] ANSI, B.«ASTM D698-Методы испытаний для отношений влажности и плотности почв и смесей почвенных заполнителей». Метод А (Стандартный Проктор). ASTM D854.
    [9] ASTM, D3080. «3080–03 (2003) Стандартный метод испытаний грунтов на прямой сдвиг в условиях консолидированного дренажа». Ежегодная книга стандартов ASTM, ASTM.EN 15732.
    [10] Стандарт, A. S. T. M. «D7181-11 (2011)». Метод испытания на трехосное сжатие консолидированных дренированных грунтов 1: 1-11.
    [11] Олсон, Рой Э., Лай Цзюннрен, (2004). «Прямое испытание на сдвиг.”Передовая геотехническая лаборатория, Департамент строительной инженерии Технологического университета Чаоян.
    [12] Медзвецкас, Юргис, Неринга Диргелене и Шарунас Скуодис. «Различия в напряженно-деформированном состоянии в образцах во время испытаний на трехосное сжатие и прямой сдвиг». Разработка процедур 172 (2017): 739-745.
    [13] Хамиди, Амир и Махди Хуресфанд. «Влияние армирования волокном на трехосный сдвиг песка, обработанного цементом». Геотекстиль и геомембраны 36 (2013): 1-9.

    Агрегатов Альфа | Керамзитовый наполнитель


    Керамзит

    Альфа — эффективный и легкий заполнитель с выдающимися огнестойкими и изоляционными свойствами
    .

    На нашем заводе в Кингсли в Стаффордшире производятся три особых типа легкого керамзита; EFG, REFAG и K25. Широкий ассортимент высококачественных глин выбирается со всего Соединенного Королевства и из карьера Кингсли. Эти глины тщательно перемешиваются и перемешиваются, чтобы обеспечить постоянный и стабильный химический состав, а затем спекаются на движущемся поде с образованием пористого керамического агломерата.После периода охлаждения агломерат измельчается и просеивается на фракции, в результате чего получается зерно разного размера в соответствии с требованиями заказчика. Все наши огнеупорные заполнители имеют низкую насыпную плотность, высокую теплоизоляцию и огнеупорность.

    Приложения

    Все марки продаются по всему миру для различных областей применения, в том числе:


    • Изоляционные огнеупорные бетоны для литья и торкретирования
    • Добавки к глиняным смесям для производства полуизоляционного огнеупорного кирпича
    • Опорная изоляция в виде рыхлого и мелкозернистого бетона
    • Состав покрытия высокотемпературных ковшей
    • Наполнитель для черепицы в сталеплавильном производстве
    • Фильтрация

    Упаковка

    Доступен в:


    • Полиэтиленовые клапанные мешки по 20-25 кг каждый в зависимости от размера зерна, упакованные в термоусадочную пленку на поддонах
      1.0-1,2 тонны на поддон
    • IBC по 1,0–1,2 тонны в мешке. Также доступна сумка половинного размера
    • Сыпучие материалы поставляются самосвалом или цистерной-силосом
    • Специальная упаковка по запросу заказчика

    Экспорт

    Мы экспортируем наши материалы по всему миру, и мы можем оперативно предоставить расценки по всем направлениям. Контейнеры, идущие в глубоководные пункты назначения, заполнены до отказа, чтобы минимизировать транспортные расходы.40-футовые контейнеры могут быть заполнены IBC или мешками на поддонах.

    Изоляционные огнеупорные заполнители

    К25 EFG EFG с низким содержанием железа REFAG
    A2

    2

    O

    3

    20-22% 31-35% 25-27% 39-42%
    Fe

    2

    O

    3

    6.5-8,0% 2,0–3,5% 1,8–2,0% 1,9–2,3%
    Эквивалент пирометрического конуса Конус 10
    1300C
    Конус 23-26
    1610C-1645C
    Конус 17-18
    1512C-1522C
    Конус 32-33
    1717C-1745C
    Насыпная плотность кг / м 3 600-1050 625-1100 625–1100 630-1100
    Доступные размеры

    10-5 мм

    5-2 мм

    5-0 мм

    2-0 мм

    Специальные сорта по желанию заказчика

    Пористость керамзита, полученного с добавлением ила пивоваренной промышленности

  • 1.

    Каяли, О., Чжу, Б.: Коррозия арматуры, вызванная хлоридом, в легковесном бетоне с высокой прочностью из золы-уноса. Constr Build Mater 19 , 327–336 (2005)

    Статья Google Scholar

  • 2.

    Чой, Й.-М., Мун, Д.-Дж., Чанг, Дж.-С., Чо, С.-К .: Влияние заполнителя отработанных ПЭТ-бутылок на свойства бетона. Cem Concr Res 35 , 776–781 (2005)

    Статья Google Scholar

  • 3.

    Пирс, Э., Блэквелл, К.: Потенциал использованной резины для шин в качестве легкого заполнителя в текучем заполнителе. Управление отходами 23 , 197–208 (2003)

    Статья Google Scholar

  • 4.

    Pinto, S .: Valorização de resíduos da indústria da celulose na produção de agregados leve. Дипломная работа. Universidade de Aveiro (2005)

  • 5.

    Cheeseman, C .: Proceedings of the Second International Slag Valorization Symposium, Левен, Бельгия, 18–20 апреля 2011 г.

  • 6.

    Wang, H.Y., Hsiao, D.H., Wang, S.Y .: Comput Concr 10 (2), 95–104 (2012)

    MathSciNet Статья Google Scholar

  • 7.

    Монтейро, Массачусетс, Раупп-Перейра, Ф., Феррейра, В.М., Лабринча, Дж. А., Донди, М.: Конференция по использованию переработанных материалов в зданиях и сооружениях, Барселона, Испания, 9–11 ноября 2004

  • 8.

    Cheeseman, CR, Makinde, A., Bethanis, S .: Resour Conserv Recycl 43 , 147–162 (2005)

    Статья Google Scholar

  • 9.

    Quijorna, N., Coz, A., Andrés, C., Cheeseman, R .: Resour Conserv Recycl 65 , 1–10 (2012)

    Статья Google Scholar

  • 10.

    Мендес, М.Р., Роча, Дж. К., Риелла, Х. К.: Производство легких заполнителей путем пиро-расширения остатков. В: Материалы 17-й Международной конференции по технологии и обращению с твердыми отходами, стр. 318–325. Филадельфия, США (2001)

  • 11.

    Van der Sloot, H.А., Уэйнрайт, П.Дж., Крессвелл, Д.Дж.Ф .: Производство синтетического заполнителя из карьерных отходов с использованием вращающейся печи инновационного типа. Waste Manag Res 20 , 279–289 (2002)

    Статья Google Scholar

  • 12.

    Тай, Дж. Х., Шоу, К. Ю., Хонг, С. Я .: Повторное использование промышленного осадка в качестве строительных заполнителей. Water Sci Tech 44 (10), 269–273 (2001)

    Google Scholar

  • 13.

    Weinecke, M.H., Faulkner, B.P .: Производство легких заполнителей из отходов. Горное дело 54 (11), 39–43 (2002)

    Google Scholar

  • 14.

    Пинто, С. Розенбом, К., Мачадо, Л., Коррейя, A.M.S., Лабринча, Дж. А., Феррейра, В. М.: Переработка промышленных отходов в производстве легких заполнителей. В: Труды REWAS, Мадрид, Испания, 26–29 сентября 2004 г.

  • 15.

    Балгаранова Дж., Петров, А., Павлова, Л., Александрова, Э .: Утилизация отходов коксохимического производства и осадка сточных вод в качестве добавок в кирпич-глину. Вода, загрязнение воздуха и почвы 150 , 103–111 (2003). http://dx.doi.org/10.1023/A:10261

  • 523

  • 16.

    Залыгина О.С., Баранцева С.Е .: Использование избыточного активного ила городских очистных сооружений в производстве строительной керамики. Стеклокерамика 55 , 164–167 (1998)

    Артикул Google Scholar

  • 17.

    Gregorová, E., Pabst, W., Bohaãenko, I.: Характеристика различных типов крахмала для их применения в обработке керамики. J Eur Ceram Soc 26 , 1301–1309 (2006)

    Артикул Google Scholar

  • 18.

    Демир И .: Влияние добавок органических остатков на технологические свойства глиняного кирпича. Управление отходами 28 , 622–627 (2008)

    Статья Google Scholar

  • 19.

    Вибуш Б., Сейфрид К.Ф .: Использование золы осадка сточных вод в кирпичной и черепичной промышленности. Water Sci Technol 36 (11), 251–258 (1997)

    Статья Google Scholar

  • 20.

    Джордан, М.М., Альмендро-Кандель, М.Б., Ромеро, М., Ринкон, Дж. М.: Применение осадка сточных вод в производстве корпусов керамической плитки. Appl Clay Sci 30 (34), 219–224 (2005)

    Статья Google Scholar

  • 21.

    Андерсон, М., Скеррат, Р.Г., Томас, Дж. П., Клэй, С.Д .: Практический пример использования золы осадка мусоросжигательной печи с псевдоожиженным слоем в качестве частичной замены при производстве кирпича. Water Sci Technol 34 (37), 507–515 (1996)

    Статья Google Scholar

  • 22.

    Монзо, Дж., Пайя, Дж., Боррачеро, М.В., Корколес, А.: Использование цементных добавок золы осадка сточных вод (SSA) в строительных растворах. Cem Concr Res 26 (9), 1389–1398 (1996)

    Статья Google Scholar

  • 23.

    Ханбилварди, Р., Афшари, С .: Зола шлама как мелкий заполнитель для бетонной смеси. J Environ Eng ASCE 121 (9), 633–638 (1995)

    Статья Google Scholar

  • 24.

    Бхатти, Дж. И., Рид, К. Дж .: Прочность на сжатие строительных растворов для золы ила. ACI Mater J 86 (4), 394–400 (1989)

    Google Scholar

  • 25.

    Pan, S.H., Tseng, D.H., Lee, C.Ч., Ли, Ч .: Влияние крупности золы осадка сточных вод на свойства раствора. Cem Concr Res 33 (11), 1749–1754 (2003)

    Статья Google Scholar

  • 26.

    Кусидо, Дж. А., Сориано, К.: Превращение гранул из осадка городских очистных сооружений в легкую глиняную керамику. Управление отходами 31 (6), 1372–1380 (2011)

    Статья Google Scholar

  • 27.

    Ван, X., Джин, Y., Wang, Z., Mahar, R.B., Nie, Y .: Исследование характеристик спекания и механизмов высушенного осадка сточных вод. J Hazard Mater 160 (2–3), 489–494 (2008)

    Статья Google Scholar

  • 28.

    Qui, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., Shao, T .: Подготовка и механизм сверхлегкой керамики, изготовленной из осадок сточных вод. J Hazard Mater 176 , 76–84 (2010)

    Статья Google Scholar

  • 29.

    Чен, Х.Дж., Ян, М.Д., Тан, К.В., Ван, С.Ю .: Производство синтетического легкого заполнителя из отложений коллектора. Constr Build Mater 28 (1), 387–394 (2012)

    Статья Google Scholar

  • 30.

    Йордан, М.М., Мартин-Мартин, Й.Д., Санфелиу, Т., Гомес-Гра, Д., Фуэнте, К.: минералогические превращения пермо-триасовых глин, используемых в производстве керамических плиток, при обжиге. Appl Clay Sci 44 (12), 173–179 (2009)

    Статья Google Scholar

  • 31.

    Элиас, X .: Optimización de los Procesos Cerámicos Industriales, La cerámica como tecnología de valorización de резидент Медельин (2000). http://www.cnpml.org/html/archivos/Ponencias (2001)

  • 32.

    Мекки, Х., Андерсон, М., Бензина, М., Аммар, Э .: Повышение ценности сточных вод оливковой мельницы с помощью его включение в строительный кирпич. J Hazard Mater 158 , 308–315 (2008)

    Статья Google Scholar

  • 33.

    Коломер, Ф.Дж., Галлардо, А., Роблес, Ф., Бовеа, Д., Эррера, Л .: Opciones de valorización de lodos de distintas estaciones depuradoras de aguas резидуали. Инж 14 (3), 177–190 (2010)

    Google Scholar

  • 34.

    UNE 32006, Топливо твердое минеральное. Определение высшей теплотворной способности автоматическим калориметром (1995)

  • 35.

    NPR-CENT / TS 15359 EN. Твердое рекуперированное топливо — характеристики и классы

  • 36.

    UNE 67–027, Кирпичи обожженные глиняные. Определение водопоглощения (1984)

  • 37.

    Red Interinstitucional de Tecnologías Limpias. Grupo de Calculo UIS-IDEAM. http://www.Tecnologiaslimpias.org/html/central/369102/369102_rn.htm

  • 38.

    Хартман, М., Свобода, К., Погорелы, М., Трнка, О.: Сжигание высушенных осадков сточных вод. в реакторе с псевдоожиженным слоем. Ind Eng Chem Res 44 , 3432–3441 (2005)

    Статья Google Scholar

  • 39.

    Colina, R., Primera, J., Plaza, E., Huerta, L .: Extracción con microondas de la materia orgánica presente en un gel de SiO 2 sintetizados por la vía de los atranos. Ciencia 19 (3), 223–230 (2011)

    Google Scholar

  • 40.

    Неймарк, А.В., Равикович, П.И.: Капиллярная конденсация в MMS и характеристика пористой структуры. Микропористый мезопористый материал 697 , 44–45 (2001)

    Google Scholar

  • Керамзитовый заполнитель | Вики Сообщества

    Файл: Leca pellets.jpg

    Поперечное сечение глиняной гальки

    Файл: Hydroton.jpg

    Керамзитовая галька марки Hydroton

    Файл: Керамзитовая галька.JPG

    Куча керамзитовых гальок на Хисингене, Гетеборг, Швеция, 2013

    Керамзитовый заполнитель, представляет собой легкую керамическую оболочку с сотовым заполнителем, полученную путем обжига натуральной глины при температуре 1100–1200 ° C во вращающейся печи. Гранулы имеют округлую форму и падают из печи с качеством примерно 0-32 мм со средней насыпной плотностью в сухом состоянии примерно 350 кг / м³.Материал просеивается на несколько сортов в зависимости от области применения.

    Обладая легким весом, высокой проницаемостью, высокой прочностью и отличными звуко- и теплоизоляционными свойствами, керамзит является хорошим универсальным заполнителем для использования в самых разных областях. Это также экологически чистый продукт, состоящий в основном из глины природного происхождения, он не подвержен химическому воздействию, гниению или морозу и имеет долгий срок службы. Легкость гранул керамзита делает их идеальным решением при строительстве на слабых почвенных отложениях или снижении нагрузки на старую и уязвимую конструкцию.Воздушные карманы внутри гранул обеспечивают отличное термическое сопротивление при использовании в качестве изоляции пола в конструкции сплошного пола. Гранулы керамзита также широко используются для производства легких блоков и часто используются в системах фильтрации воды из-за их большой площади поверхности.

    Обычно используются блоки, плиты, геотехнические заполнения, легкий бетон, водоподготовка, гидропоника и гидрокультура.

    Тор Арне, Хаммер; Клаас ван Брейгель, Стейнар Хелланд, Ивар Холанд, Магне Мааге, Ян П.Г. Мейнсберген, Эдда Лилья Свейнсдоттир (2000). Экономическое проектирование и строительство из конструкционного легкого заполнителя .