Напряжение в сети как повысить: Низкое или пониженное напряжение. Как повысить напряжение в сети

Содержание

Низкое или пониженное напряжение. Как повысить напряжение в сети

Содержание:

  • Низкое и пониженное напряжение. Причины
  • Чем опасно низкое и пониженное напряжение
  • Какие приборы чувствительны к этой проблеме, а какие нет?
  • Как повысить напряжение в сети
  • Повысить напряжение с помощью стабилизаторов Skat и Teplocom

Низкое и пониженное напряжение. Причины

Почему в наших электрических сетях низкое или пониженное напряжение хорошо известно. Основные причины — старение электрических сетей, плохое их обслуживание, износ основного оборудования, неверное планирование сетей, значительный рост потребления энергии. В результате мы имеем миллионы потребителей, получающих низкое напряжение. Хорошо, если в сети параметры падают до 200 Вольт, часто бывает что в домах 180, 160 и даже 140 Вольт.

Как известно, напряжение в сети не одинаково у потребителей, подключенных к одной линии передач.

Чем дальше потребитель находится от распределительного устройства, тем ниже будет его значение. Конечно, в этой ситуации необходимо повысить напряжение.

К понижению напряжения также приводит существенное увеличение мощности каждого потребителя в сети. Сейчас трудно найти дом, в котором есть только один чайник, один телевизор, один холодильник и пять лампочек. А ведь это примерный расчёт потребления электричества в советские годы, в то время в домах устанавливали автоматы (пробки) на 6,5 Ампер. Не сложный расчёт 6,5 х 220 показывает, что максимальная мощность электрических одновременно включенных приборов не должна была превышать 1,5 кВт. Сегодня один хороший чайник берет 2 кВт. В результате сеть просаживается, получаем низкое напряжение.

Ещё одно явление современной жизни, приводящее понижению параметров тока — сезонность и периодичность возрастания нагрузки. Особенно хорошо это явление можно проследить в дачных поселках.

Летом потребление растёт: дачники приезжают, поливают, строят, варят, парят, охлаждают, качают, смотрят, вентилируют, сверлят, пилят, косят, отмечают, употребляют, закусывают — ну в целом «потребляют». А зимой нет никого — холодно и скучно. В результате летом напряжение падает, а зимой растёт. В выходные дни дачники приезжают, поливают, строят, варят, парят, охлаждают, качают, смотрят, вентилируют, сверлят, пилят, косят, отмечают, употребляют, закусывают — ну в целом опять «потребляют». А в рабочие дни нет никого — тихо и скучно. В результате в выходные дни напряжение падает, а в рабочие — растёт.

Чем опасно низкое и пониженное напряжение

Электрические приборы, которыми мы пользуемся, рассчитаны на входное напряжение в диапазоне 220—230 Вольт плюс-минус 5 %. Исходя из этого определяются все электрические параметры приборов: общее сопротивление, сопротивление отдельных частей схемы, длина и сечение всех проводников, количество витков в обмотках двигателей и электромагнитах, параметры транзисторов, резисторов, конденсаторов, трансформаторов, нагревательных элементов.


Если в сети низкое или пониженное напряжение, то электрические приборы могут работать не корректно, не эффективно или вовсе не работать. Низкое напряжение может привести к поломке прибора, перегреву, дополнительному износу или даже возгоранию устройства. Вот почему обязательно нужно повысить напряжение.

Какие приборы чувствительны к этой проблеме, а какие нет?

Легко переносят пониженное напряжение осветительные приборы: лампочки накаливания будут работать, но свет будут давать более тусклый. Будут работать и электроплиты, но менее эффективно. Легко переносят низкое напряжение современные телевизоры, оснащенные импульсными источниками питания с широким диапазоном входного напряжения.

Наиболее чувствительны к низкому напряжению электродвигатели, электромагниты, платы управления. Низкое напряжение приводит к существенному (кратному) увеличению нагрузки на обмотки электродвигателей. Чем ниже напряжение, тем больше сила тока в этих приборах. В результате могут перегреться и даже расплавиться провода, прибор сгорит. Вот почему холодильники и насосы не могут даже включиться при низком напряжении, от полного сгорания их спасает встроенная защита, отключающая прибор. Для нормально работы электродвигателей необходимо повысить напряжение.
Низкое напряжение опасно и для элементов электронного управления различных сложных приборов. При пониженном напряжении микросхемы и процессоры работают не корректно, что приводит к отключению прибора или его поломке. Нельзя эксплуатировать при низком напряжении современные колонки отопления, они имеют и электронное управление и электронасосы. Для нормально работы электронных устройств необходимо повысить напряжение.

Как повысить напряжение в сети

Чтобы повысить напряжение в сети есть два основных способа. Первый добиваться от энергетиков нормализации параметров электрического питания. Писать жалобы, ходить на приёмы к чиновникам, проводить экспертизы, идти в суд. Метод правильный, но очень трудный.
Второй способ повысить напряжение — использовать современные стабилизаторы. Конечно, этот способ работает не всегда, если напряжение очень низкое (меньше 120 вольт), то этот способ не сработает. Если вы решили использовать стабилизаторы чтобы повысить напряжение в вашем доме, нужно определиться с параметрами тока и величиной нагрузки. Исходя из этих параметров проводить выбор стабилизатора. Можно установить один мощный стабилизатор на входе в дом и обеспечить нормализацию параметров тока во всех помещениях. Этот способ самый эффективный, но требует вложения средств, профессионального монтажа, специального помещения.

Можно установить несколько локальных маленьких стабилизаторов в наиболее важных местах. Этот способ более простой и менее затратный. В первую очередь, необходимо повысить напряжение до нормального для таких потребителей как: насосы, холодильники, кондиционеры, газовые колонки.

Повысить напряжение с помощью стабилизаторов Skat и Teplocom

Большой выбор надежных стабилизаторов Skat и Teplocom вы найдете в разделе «Стабилизаторы напряжения». Высокое качество стабилизаторов напряжения Skat и Teplocom гарантируется 20-летним опытом производства электрооборудования.

На заводе введена, поддерживается и эффективно действует система управления качеством на основе принципов стандарта ISO 9001. Вся продукция компании соответствует требованиям стандартов ИСО 14001 и OHSAS 18001.
Стабилизаторы напряжения рекомендованы специалистами компаний: Vaillant, Baxi, Junkers, Thermona, Bosch, Buderus, Alphatherm, Gazeco, Termet, Chaffoteaux, Sime.

Надежная заводская гарантия — 5 лет!

Читайте также:

  • Высокое или повышенное напряжение. Как понизить напряжение в сети
  • Скачки напряжения, защита от скачков напряжения
  • Эффективная защита сети по напряжению

Как повысить напряжение в сети до 220 в частном доме

Морозной зимой сельским жителям много хлопот доставляет обогрев своих жилищ. Тем же, кто отказался от печного отопления, проблему, как будто специально, создает заниженный уровень поступающей электроэнергии.

Да и в многоэтажных зданиях многочисленных городских поселков жители страдают от плохого электричества. Вот люди и задаются вопросом: Как повысить напряжение в сети до 220 в частном доме с наименьшими затратами и почему энергоснабжающие организации не качественно выполняют свои обязанности?

Предлагаю рассмотреть его объективно с точки зрения потребителя и поставщика. Решение проблем лучше искать совместными усилиями на основе компромисса.

Содержание статьи

Электрические районные сети: где искать потери напряжения

Рекомендую обратить внимание на три вопроса:

  1. Работу трансформаторной подстанции.
  2. Состояние линии электропередач.
  3. Равномерность распределения нагрузки по фазам.

Виды трансформаторных подстанций 10/0,4 кВ: простая оценка по внешнему виду

Электроэнергия от промышленных генераторов к нам в жилой дом поступает по линиям электропередач через трансформаторные подстанции. На них напряжение с 10 или 6 киловольт снижается до 0,4.

Конструкция ТП должна пройти реконструкцию с заменой изношенного оборудования, отвечать современным требованиям надежности и безопасности.

В этом случае вам просто уже повезло. Если воздушная ЛЭП 380 вольт идет от подобной модульной подстанции, то она обладает резервом мощности.

Однако довольно часто еще можно встретить старые конструкции ТП, введенные в работу в советское время.

Нельзя сказать, что они выработали свой ресурс и не пригодны к работе. Просто надо понять, что сейчас сильно изменились условия их эксплуатации. Они уже не справляются нормально с современными, сильно возросшими нагрузками.

Их резерв мощности был рассчитан на энергоснабжение групп потребителей в частных домах, подключенных к бытовой проводке, собранной алюминиевыми жилами 2,5 мм кв. Сила тока тогда практически никогда не превышала 16 ампер, что соответствовало примерно 3 киловаттам.

С тех пор многое изменилось. Даже простой электрочайник потребляет 2 кВт. А ведь еще есть различные отопители и нагреватели, стиральные машины, микроволновки, бытовой инструмент. У многих мастеров работают насосы, станки, сварка.

Все эти потребители вместе сильно нагружают старые трансформаторные подстанции: их мощности не хватает на обеспечение полноценного питания подключенных нагрузок.

Воздушная линия электропередач: влияние конструкции на качество электроснабжения

Закон Ома определяет, что падение напряжения на участке воздушной линии электропередач от трансформаторной подстанции до конечного потребителя зависит от силы тока и величины сопротивления проводов.

На последний параметр влияют протяженность токопроводящей магистрали и конструкция проводников:

  • тип металлических жил;
  • общее поперечное сечение провода;
  • качество контактных соединений в местах стыковок — переходное сопротивление.

Чем длиннее магистраль от трансформаторной подстанции до последнего потребителя, тем больше проблем возникает у энергоснабжающей организации, да и жителей дальних домов.

Существующие нормативы ПУЭ определяют, что уровень напряжения в однофазной сети должен укладываться в предел 207÷253 вольта. Для обеспечения этого условия на ТП предусмотрена возможность его оперативного регулирования.

Обычно им пользуются для переключения режимов работы при смене сезонов: зимний период связан с большим энергопотреблением. Он требует завышать выходной уровень сети 0,4 на трансформаторной подстанции.

Длинные воздушные линии и возросшее количество мощных потребителей приводят к тому, что у владельцев домов, запитанных около ТП, напряжение находится на максимуме предела регулирования и поднимать его уже нельзя, а на самых удаленных потребителях падает ниже допустимого уровня вплоть до 180 вольт, а то и ниже.

В этой ситуации поставщик энергии быстро решить вопрос не сможет. Ему необходимо:

  • полностью менять оборудование трансформаторной подстанции;
  • или строить новые линии электроснабжения;
  • либо решать одновременно все задачи.

Нам следует понимать, что они энергозатратны, не дешевы, требуют приложения больших усилий и материальных средств.

Как устроена старая ВЛ

За основу передачи энергии раньше массово использовали алюминиевые провода со стальным сердечником. Их так и называли: АС. Кстати, производство алюминиево-стальных проводов различных типов существует до сих пор.

В сельской местности применяется провод АС с сечением 16 мм квадратных, как наиболее бюджетный вариант. Его небольшой диаметр при значительной длине и наличии стальной жилы создает довольно высокое электрическое сопротивление.

Ухудшает его еще способ соединения раскатки провода на составляющие проволоки и скрутку их в единый узел. Хорошо, если он выполняется с обжатием в гильзе. А ведь его могут сделать и на скорую руку.

Косвенным признаком вины алюминиевых проводов является характерное снижение напряжения вечером и нормальная величина ночью, когда большая часть нагрузки снята.

Модернизация ВЛ кабелем СИП

Современная конструкция воздушного кабеля сделана для обеспечения минимальных потерь напряжения. У них используется улучшенная технология сборки и повышенная проводимость токопроводящих жил. Каждая из фаз покрыта слоем светостойкой ПВХ изоляции, что разрешает скручивать их единой магистралью.

Кабель СИП монтируется по специальной технологии, обеспечивающей минимальные потери напряжения при транспортировке по нему электрической энергии.

Переход воздушной линии с открытых алюминиевых проводов типа АС на кабель СИП повышает надежность и эксплуатационные характеристики ВЛ.

Распределение нагрузки по фазам: как просто определить дисбаланс

Идеальное трехфазное напряжение создается генераторами на холостом ходу.

Его схему и диаграмму удобно представлять векторной формой в виде равностороннего треугольника. Между вершинами A, B и C создается линейное напряжение 380, а относительно нуля и вершин — фазное.

Это напряжение 220 поступает к нам в жилой дом и ко всем потребителям. К нему каждый владелец по своему усмотрению подключает нагрузку. Процесс этот носит чисто случайный характер на всем протяжении питающей ЛЭП.

Если какая-то фаза станет перегруженной (течет больший ток), то на ней может произойти посадка напряжения. Точка рабочего нуля в треугольнике смещается из центра, меняются разности двух других фазных потенциалов.

На этот процесс снабжающая организация реагировать практически не может. Она влияет на него на стадии проекта и очень редко переключает потребителей при эксплуатации.

Электрические замеры под напряжением на ВЛ около дома способны дать объективную оценку качества напряжения. Но делать их могут только подготовленные бригады электриков с соблюдением ряда организационных и технических мероприятий.

Владелец дома может оценить роль снабжающей организации в подводе электричества в его жилище только визуально по внешнему виду подстанции, воздушной ЛЭП и опросе ближайших соседей о качестве электроэнергии в их зданиях.

Причина низкого напряжения довольно часто может быть создана по вине владельца здания.

Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы

Внимание: зона ответственности снабжающей организации заканчивается на ответвительной опоре! Схема подключения к ней, кабель ввода в дом и весь внутренний монтаж лежат на совести частного владельца.

Поэтому вначале надо обращать внимание на состояние качества уличной проводки, а затем — внутридомовой.

Контакты на улице

Ввод в здание и подключение к счетчику делают бригады электриков от поставщика и энергосбыта. От качества их работы может пострадать хозяин дома. Ему следует контролировать состояние проводов и создаваемых контактов.

Обычная скрутка алюминиевых жил на воздухе покрывается слоем окислов и ухудшает переходное сопротивление. Это место начинает больше греться и сильнее окисляться. Процесс со временем нарастает, хотя визуально может быть не заметен.

Естественный обдув воздухом и длина открытого провода его маскируют, но не останавливают. Увеличенное переходное сопротивление такого контакта — причина потери напряжения на нем.

Подключение ответвления специальными зажимами с нарушениями технологии — тоже возможная причина плохого контакта.

Если на нем образовались трещины, сколы, потемнения и другие дефекты, то они явно свидетельствуют об увеличенном переходном сопротивлении, потерях энергии.

Контакты вводного автомата

Подключение силового провода к автоматическому выключателю на вводе часто требует использования специальных переходников с созданием надежного ужима. Халатная работа сразу может не сказаться, но со временем проявиться.

Переходное сопротивление контактов владелец может проверить созданием электропроводке режима максимальной нагрузки на некоторое время. Сразу потребуется проконтролировать их нагрев. Проводя визуальный осмотр, следует обращать внимание на потемнение корпуса защитного модуля, состояние изоляции.

Внутри дома возможны и другие причины, ведущие к снижению уровня электричества.

Общие организационные вопросы: что обсуждать с поставщиком электроэнергии

Приступать к обсуждению возникших проблем следует только после того, как окончательно стало ясно, что у владельца здания все выполнено надежно и его вины нет.

Это же должны подтвердить соседи, у которых не решены аналогичные вопросы. Действовать лучше сообща. Обращаться следует в различные инстанции власти с письменными заявлениями, но начать необходимо с поставщика. Он в первую очередь должен обеспечить качество подводимой электроэнергии.

Однако, как показано выше, этот процесс, скорее всего, растянется на длительный срок. Владельцу дома до его решения придется принимать самостоятельные меры.

Как повысить напряжение в сети: 2 подхода

Решить вопрос можно своими руками или приобрести специальное промышленное оборудование.

Как повысить напряжение: бюджетные варианты от бывалого

Способ №1: старый стабилизатор от черно-белого телевизора

Кинескопные ламповые модели телевизоров в советское время потребляли много электроэнергии, порядка 400 ватт. Им требовалось стабилизированное питание.

Для них многочисленные заводы массово выпускали различные модели стабилизаторов напряжения. Со временем необходимость в них пропала и они попали к мастерам в кладовки, а кто-то просто выбросил, хотя надежность и работоспособность этих устройств сохранилась и по сей день.

Использовать такой старый стабилизатор вполне допустимо, но, стоит обратить внимание на его выходную мощность. Питать через него лучше какой-то один бытовой прибор с электродвигателем.

Если имеются два одинаковых стабилизатора, то их можно объединить и подключить более высокую нагрузку.

Способ №2: понижающий трансформатор

Подойдет любая модель от старого ненужного зарядного устройства автомобильных аккумуляторов или самодельная конструкция. Показываю на примере трансформатора 220/12-36 вольт. Его номинальная мощность 315 вольт-ампер.

На правой части картинки показаны выходные цепи со снятым корпусом. Подобных зарядных было выпущено очень много. Из них можно выцепить схему электроники. Она не нужна.

Далее поступаем очень просто. Собираем схему увеличения напряжения, когда первичная обмотка работает, как обычно, а вторичка добавляет свои вольты к питанию прибора.

С научной точки зрения необходимо выполнять фазировку, а на ее основе ставить перемычку между обмотками, которая позволит сделать вольт-добавку. Предлагаю более простой вариант:

  1. Соединяем перемычкой произвольно одну клемму входной цепи с любой выходной, действуя по принципу: «мне повезет».
  2. Включаем трансформатор в сеть обмоткой 220 и замеряем сигнал на его выходе вольтметром.
  3. Если он увеличился, то удача нам улыбнулась и все получилось.
  4. Когда напряжение снизилось, то это значит, что мы собрали схему понижения и требуется переключить перемычку на одной из клемм входа или выхода.

Если отсутствует трансформатор заводского исполнения, то его не так уж сложно намотать своими руками на подходящем магнитопроводе. Можно использовать даже статор от сгоревшего асинхронного двигателя.

Методику расчета и сборки описывать не буду. Она довольно подробно изложена в этой статье про трансформаторный паяльник Момент. Что будет не понятно — спрашивайте. Я помог уже многим читателям в этом вопросе.

Подключать бытовой прибор к добавленному трансформатором напряжению следует с учетом мощности нагрузки. Первичная и вторичная обмотки могут перегреться от повышенных токов.

Чтобы не допустить перегрева добавочного ТН, достаточно правильно подобрать к нему предохранитель, контролировать и ограничивать время работы при максимальных нагрузках.

При скачках напряжения в сети на величину до 25-30 вольт необходимо в выходную цепь трансформатора включать реле РКН. Без него выходной уровень при броске может перевалить за 253 вольта, что создаст аварийную ситуацию.

Способ №3: стабилизатор напряжения своими руками

Любителям мастерить предлагаю собрать относительно не сложную электронную схему на трансформаторе с тремя обмотками, работающими по принципу приведенной выше вольт-добавки понижающего трансформатора.

Предлагаемый стабилизатор напряжения своими руками нормально справляется со стабилизацией электроэнергии для нагрузок 1,5 кВт при уровне сети 200 вольт и 700 ватт при снижении до 180В. Работает он автоматически.

Компаратор имеет 4 ступени настройки порогов срабатывания. Переключение обмоток осуществляют контакты реле РП-21 постоянного тока с напряжением 24 вольта. Их можно заменить аналогами, но обращайте внимание на коммутационную способность контактов. Иначе они сгорят.

Марки и номиналы компонентов электронной базы показаны на схеме. Однако, проще купить такой прибор промышленного изготовления.

Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание

Индуктивная нагрузка

Выбирать модель стабилизатора следует под конкретные нужды его эксплуатации. Необходимо учесть, что пусковые токи электродвигателей превышают в два-три раза номинальную величину нагрузки.

Мощность источника должна их надежно перекрывать. Особенно важно выполнять это требование для электродвигателей насосов различных жидкостей и компрессоров, начинающих свой запуск под нагрузкой рабочей среды, а не раскручивающихся на холостом режиме.

Способы регулирования

Стабилизаторы напряжения работают по принципу автотрансформатора и построены по одной из двух схем:

  1. ступенчатого переключения дополнительных обмоток релейными или полупроводниковыми ключами;
  2. плавного регулирования выходной величины за счет перемещения сервопривода по принципу работы ЛАТР.

В первом случае на автотрансформаторе создаются отпайки. Их количество влияет на величину ступени регулирования напряжения. Коммутации происходят по командам от электронного блока тиристорами или симисторами.

Стабилизатор с сервоприводом плавнее переключает напряжение движением угольных электродов по виткам автотрансформатора.

Сервоприводный механизм и щетки плохо переносят часто меняющиеся нагрузки и разрушаются от токов, которые возникают при работе от сварочных трансформаторов. Даже если кто-то из соседей пользуется сваркой, то он может повредить сервопривод.

Стабилизаторы напряжения изготавливают для работы с трехфазной и однофазной нагрузкой. Однако при их выборе надо хорошо представлять условия их эксплуатации.

Особенности трехфазного питания

В доме с таким электроснабжением на вводе лучше устанавливать 3 однофазных устройства на каждую фазу отдельно. Любой из них будет нормально выравнивать напряжение при разных нагрузках намного лучше, чем один общий.

Трехфазные электродвигатели и трансформаторы подключают через соответствующие 3-х фазные стабилизаторы. Они больше приспособлены к симметричным нагрузкам.

Режим Bypass

Полезной функцией прибора является возможность транзита электроэнергии, минуя орган стабилизации.

Режим байпас имеется не на всех стабилизаторах, а только на более дорогих. Он позволяет при номинальных уровнях напряжения экономить ресурс работы оборудования.

Видеоролик владельца Voltra BY «Как выбрать стабилизатор для дома» поможет вам определиться с поиском подходящей конструкции. Рекомендую посмотреть.

Если же у вас еще остались вопросы и не ясно, как повысить напряжение в сети до 220 в частном доме, то спрашивайте. Постараюсь помочь.

Почему увеличение напряжения приводит к уменьшению тока, а не к уменьшению мощности?

$\begingroup$

Недавно я прочитал, что для передачи электричества на большие расстояния по линиям электропередач им приходилось повышать напряжение, что приводило к уменьшению тока через среду. Это отражено в формуле $P=IV$. Чего я не могу понять, так это почему это приводит к падению тока ($I$), а не увеличению мощности ($P$)? Я предполагаю, что они должны каким-то образом поддерживать постоянную мощность, предотвращая ее увеличение каким-то образом, но как это достигается? Пожалуйста, извините за глупый вопрос, так как я все еще новичок в этом вопросе, но я просто предположил из приведенной выше формулы, что увеличение $V$ естественным образом приведет к увеличению $P$? Есть ли что-то, что мне не хватает? 😐

  • электрический ток
  • напряжение
  • мощность
  • расстояние
$\endgroup$

2

$\begingroup$

Чего я не могу понять, так это почему это приводит к падению тока (I), а не к увеличению мощности (P)?

Когда мы говорим, что увеличение передачи уменьшает силу тока, мы рассматриваем случай, когда мы (например) разрабатываем систему передачи энергии и у нас есть определенная группа клиентов для обслуживания.

Например, определенное количество жилых помещений с определенным количеством лампочек, микроволновых печей, кондиционеров и так далее.

Предполагается, что мощность, необходимая для этих клиентов, постоянна, и какое бы напряжение мы ни выбрали для линии электропередачи, мы преобразуем его в напряжение местной сети (обычно 120 или 240 В) с помощью трансформатора перед поставкой клиентам.

Итак, мы изменим конструкцию трансформаторов, которые мы используем для подключения генератора к линии электропередачи, а линию электропередачи — к конечным потребителям, чтобы обеспечить требуемое напряжение на линии электропередачи.

Это означает, что мощность, требуемая потребителями, остается постоянной, и как бы мы ни изменяли напряжение линии передачи, требуемый ток изменяется обратно пропорционально.

$\endgroup$

$\begingroup$

Обратите внимание, если пренебречь другими потерями, то электрическая мощность $P$ остается постоянной в зависимости от источника питания (например, от электрогенератора). Мощность $P=VI$ является произведением двух переменных: напряжения $V$ и электрического тока $I$ через проводник (при коэффициенте мощности $1$).

Следовательно, если напряжение $V$ увеличивается, электрический ток $I$ через проводник уменьшается и, наоборот, мощность $P=VI$ остается постоянной.

$\endgroup$

$\begingroup$

Я думаю, что это проблема формулировок, а не отсутствие физических знаний в отношении эффективности, мощности и т. д. Когда мы говорим, что изменяем одну величину, мы должны оставить другую без изменений, а затем определить влияние на конечную величину:

например, $V$ увеличивается, $I$ остается прежним, что происходит с $P$? Это увеличивается. $V$ поддерживается постоянным, $I$ увеличивается, затем увеличивается $P$. Видеть?

В этом сценарии значение $P$ поддерживается постоянным, потому что значение $P$ может принимать разные формы, а не только ток и напряжение. Это то, что вырабатывается на электростанции из химической и кинетической энергии и т. д. и преобразуется в электрическую. Таким образом, $P$ сохраняется постоянным, потому что это то, что мы генерируем, независимо от выбора $I$ и $V$, в которых мы передаем эту мощность.

Затем из этого заданного количества $P$ выбираются $I$ и $V$, и для максимальной эффективности, как говорится в других ответах, чем больше $V$, тем эффективнее; $V$ увеличивается, поэтому при постоянном $P$ $I$ должно уменьшаться. Большой $I$ создает много тепла.

$\endgroup$

1

$\begingroup$

Игнорируя все тепловые потери, постоянная мощность — это всего лишь утверждение о сохранении энергии!

$\endgroup$

$\begingroup$

Проблема передачи энергии заключается в том, чтобы сделать это эффективно (с низкими затратами) и безопасно.

Требуемая мощность фиксирована. В основном это напряжение, умноженное на ток (на данный момент забываем о коэффициенте мощности). Чем выше напряжение передачи, тем меньше ток при той же мощности. Чем меньше ток, тем меньше сечение провода. Чем меньше сечение провода, тем ниже стоимость материала проводника (медь, алюминий и т.д.).

Недостатком является опасность поражения электрическим током при высоком напряжении. Это требует, чтобы первичные высоковольтные линии электропередачи были подняты над землей, чтобы уменьшить вероятность контакта с высоковольтными линиями. Это увеличивает стоимость установки. Но в целом более экономично передавать мощность переменного тока при высоком напряжении и низком токе.

Надеюсь, это поможет.

$\endgroup$

2

$\begingroup$

Что является источником этой силы? Может быть, гидроэлектростанция или атомная или что-то в этом роде. Значит, это произвело некоторую энергию, верно? Теперь спросите себя об этом. Если бы вы использовали трансформатор (который, если упростить, представляет собой всего две катушки без питания) на выходе этой установки, изменилась бы энергия или мощность?

Внимание, спойлер: нет, не будет. Нет причин, по которым это могло бы измениться. Теперь, как вы сказали, если напряжение увеличивается, может измениться только один параметр — ток.

$\endgroup$

$\begingroup$

Да, есть кое-что, чего вам не хватает, и это устройство под названием трансформатор .

Чтобы свести к минимуму потери мощности в данной линии передачи, которые масштабируются как (квадрат тока) x (сопротивление в линии), необходимо минимизировать ток. Устройство, называемое трансформатором , повышает напряжение при одновременном снижении тока в той же пропорции. Итак, позиционируем повышающий трансформатор на стороне источника линии, что увеличивает напряжение и уменьшает ток, а затем мы размещаем понижающий трансформатор на стороне нагрузки линии, который снижает напряжение до управляемого и безопасного уровня и увеличивает ток.

На каждом этапе процесса произведение (напряжение) x (ток), равное мощности , остается неизменным, за исключением небольших потерь в задействованных трансформаторах.

$\endgroup$

электричество — Почему переменный ток легче поднять до высокого напряжения, чем постоянный? 92.R$, повышение U понизит I и, таким образом, ограничит потери за счет эффекта Джоуля.

Из того, что я читал, одна из причин, по которой электричество передается в переменном токе, заключается в том, что проще/дешевле поднять переменное напряжение до 200 кВ, чем если бы оно было в постоянном.

Почему?

  • электричество
  • электрический ток
  • напряжение
  • электроника
  • электротехника
$\endgroup$

2

$\begingroup$

Изменение напряжения переменного тока можно осуществить с помощью простого трансформатора с железным сердечником. Это простое устройство без движущихся частей, состоящее только из магнитного сердечника, медного провода и некоторой изоляции (опционально охлаждающей жидкости). Почти ничего, что может сломаться. Хорошие трансформаторы могут иметь удивительный КПД, превышающий 95%.

Существуют и другие преимущества использования переменного тока вместо постоянного (а также недостатки). С AC у вас так меньше проблем с искрением на выключателях т.к. Если искрение начинается с переменного тока, оно часто останавливается при следующем пересечении нуля переменного тока. При постоянном токе дуга не остановится сама по себе. Кроме того, с переменным током у вас меньше проблем с перемещением материала из-за электролитических эффектов. А запуск двигателей переменного тока (особенно трехфазного) почти тривиален без необходимости использования щеток. С постоянным током вам нужны щетки или какая-то интеллектуальная электроника (BLDC-Motors — это в основном двигатели переменного тока с подключенной интеллектуальной электроникой).

Кроме того, электросеть с переменным током самостабилизируется (в некоторой степени) за счет частоты переменного тока.

Обратной стороной переменного тока являются потери из-за емкости (слепой ток также вызывает резистивные потери). Фазовый сдвиг всегда является проблемой, как только вы работаете с переменным током.

Преобразование постоянного тока в другое напряжение требует больше усилий. Одним из способов является привод двигателя постоянного тока, который механически соединен с генератором постоянного тока. Такие системы большие, имеют движущиеся части и имеют более низкую эффективность.

Сегодня у нас есть электроника, чтобы сделать это еще лучше. Мы в основном разделяем постоянный ток на переменный, пропускаем его через трансформатор и снова выпрямляем его выход… вуаля, преобразователь постоянного тока в постоянный (все это очень упрощено).

$\endgroup$

3

$\begingroup$

Как и в случае с большинством инженерных решений, все сводится к тому, «как лучше всего найти компромисс между конфликтующими ограничениями и требованиями».

  1. Переменный ток обеспечивает очень простое преобразование между различными напряжениями с помощью пассивных трансформаторов
  2. Преобразование переменного тока хорошо масштабируется в широком диапазоне напряжений и мощностей
  3. AC является историческим стандартом, и все бытовые приборы рассчитаны примерно на 110 В или 220 В переменного тока, даже если большинство из них сразу преобразует это во что-то другое.
  4. DC более энергоэффективен, особенно на больших расстояниях

В результате большая часть электроэнергии передается с использованием переменного тока, но существует множество существующих систем, использующих постоянный ток. Некоторые из самых крупных (как по расстоянию, так и по мощности) находятся в Китае и Бразилии. Описание технологии см. на странице https://en.wikipedia.org/wiki/High-voltage_direct_current.

Достаточно просто выбрать правильный инструмент для конкретной работы.

$\endgroup$

8

$\begingroup$

Поскольку напряжение индуцируется скоростью изменения магнитного поля.

Если бы мы попытались построить трансформатор постоянного тока, то для поддержания скорости изменения магнитного поля магнитное поле должно было бы неограниченно возрастать, это явно невозможно по двум причинам.

  1. Это означало бы, что входной ток будет возрастать вечно, это явно невозможно.
  2. Ферромагнитные материалы подвергаются явлению, известному как насыщение, когда, если магнитное поле становится сильным, относительная проницаемость падает, как камень.

В результате мы просто не можем построить преобразователь постоянного напряжения, используя только статические электромагнитные компоненты. Приходится прибегать либо к движущимся частям, либо к электронике.

$\endgroup$

$\begingroup$

Вы совершенно правы, чем выше напряжение, тем меньше потери энергии на джоулев нагрев.

Основная причина, по которой электричество вырабатывается и транспортируется на переменном токе, заключается в том, что электричество, вырабатываемое электромагнитным двигателем благодаря механизмам электрической индукции, фактически находится на переменном токе. Таким образом, потребуется выпрямитель для преобразования переменного тока в постоянный, а благодаря джоулеву нагреву энергия будет потеряна.

Кроме того, многие электроприборы работают на переменном токе (например, фены, электромобили. ..), поскольку они преобразуют переменный ток в кинетическую энергию с помощью электродвигателей. И если бы в наши дома подавалось электричество постоянного тока, то нам понадобился бы полевой МОП-транзистор или IGBT для преобразования их обратно в переменный ток, что повлекло бы за собой дополнительные потери энергии.

Не обязательно проще поднять переменный ток до высокого напряжения, но постоянный ток не подходит из-за необходимости нескольких преобразований.

Проще говоря:

  1. Электричество вырабатывается на переменном токе
  2. Большинство электроприборов должны работать от сети переменного тока

Наслаждайтесь!

$\endgroup$

4

$\begingroup$

Вы могли бы пропускать постоянный ток через трансформатор, если бы материал магнитного сердечника имел бесконечную плотность потока насыщения. Но это не так, поэтому время от времени вам приходится менять направление (полярность). Следовательно, настоящие трансформаторы работают только с переменным током.

$\endgroup$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.