Измерение малых сопротивлений мультиметром: Измерение малых сопротивлений, шунтов – Измерение малых сопротивлений, шунтов

Содержание

РадиоКот :: Умножитель импеданса

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Умножитель импеданса

В практике радиолюбителя нет-нет, да и возникнет необходимость достаточно точного измерения величин, выходящих за пределы имеющихся в распоряжении измерительных приборов. Примером может послужить задача измерения малых сопротивлений: сопротивления токового шунта, соединительных проводов, паразитного сопротивления катушки индуктивности. Другой пример — необходимость оценки емкости конденсаторов в десятки тысяч микрофарад. В этой ситуации на помощь может прийти предлагаемое устройство, которое позволяет существенно расширить пределы измерений обычного мультиметра в сторону малых сопротивлений — больших емкостей.

Как можно догадаться из названия статьи, устройство представляет собой умножитель импеданса, т.е. четырехполюсник (рис. 1), входной импеданс которого с левой стороны Z равен подключенному с правой стороны импедансу Zx, умноженному на постоянный коэффициент N.

 

Рис. 1.

 

Взяв N=1000 мы получим возможность измерять сопротивление в миллиомах (считывая показания в омах) и емкость в тысячах микрофарад (считывая показания в микрофарадах). Теоретически, с подобным прибором можно проводить и измерение индуктивностей, но эта задача, в силу некоторой специфики измерения малых индуктивностей, выходит за рамки данной статьи.

 

Принцип работы.

 

Упрощенная схема устройства, поясняющая принцип его работы, приведена на рис. 2.

 

Рис. 2.

 

Преобразователь ток-напряжение на ОУ DA1 вместе с вычитающим усилителем на ОУ DA2 поддерживают на резисторе R7 напряжение, пропорциональное падению напряжения на резисторе R1 независимо от величины напряжения на входе. Таким образом, ток через резистор R7, а, следовательно, и через измеряемый импеданс Zx, определяется входным током и отношением величин этих резисторов. Для нормальной работы устройства, вычитающий усилитель должен как можно точнее выполнять свою функцию, т.е. как можно точнее должно выполняться равенство R6/R2 = R4/R3 = K, где K — коэффициент передачи вычитающего усилителя. Ток через импеданс Zx тогда будет равен Izx = I×K×R1/R7, где I — входной ток. Неинвертирующий усилитель на ОУ DA3 усиливает напряжение на импедансе Zx и передает результат на вход устройства (напряжение между входами охваченного отрицательной обратной связью ОУ равно нулю), определяя таким образом значение входного напряжения. Проведя несложные преобразования можно увидеть, что импеданс со стороны входа Z = Zх×K×(R1/R7)×(1+(R3+R4)/R5). Важным частным случаем этого равенства является случай, когда все резисторы вычитающего усилителя равны между собой (R2=R3=R4=R6). Тогда K=1 и Z = Zх×(R1/R7)×(1+2×R3/R5), и, соответственно, N = (R1/R7)×(1+2×R3/R5). Легко видеть, что отношение R1/R7 определяет ток, которым возбуждается Zx, а усиление усилителя напряжения определяется резисторами R3, R4 и R5. Обе эти величины не зависят друг от друга. Данная особенность позволяет в достаточно широких пределах варьировать режимы работы устройства в зависимости от параметров примененных компонентов и требуемых методик измерения. 

 

Конструкция.

 

Полная принципиальная схема устройства показана на рис. 3.

 

Рис. 3.

 

От приведенной выше схемы она отличается наличием защиты со стороны входа мультиметра и дополнительным узлом на ОУ DA3 формирующим искусственную среднюю точку с возможностью смещения ее потенциала в нужную сторону для более полного использования источника питания. Конденсаторы C5-C7 обеспечивают необходимую частотную коррекцию. Устройство питается от трех батареек типа AAA (LR03). Оно выполнено в виде двух смонтированных друг над другом небольших печатных плат (рис. 4) и размещено вместо четвертой батарейки в слегка доработанном стандартном корпусе типа SBH-441AS с выключателем. Там же расположен индикаторный светодиод с резистором (рис. 5). Все необходимые для повторения материалы находятся в приложении.

 

Рис. 4.

 

Рис. 5.

 

На принципиальной схеме приведены номиналы компонентов, которые реально установлены в экземпляре устройства, однако их величины можно варьировать в пределах примерно плюс-минус 50%, главное, чтобы точно выполнялись приведенные соотношения. Величину резистора R2 не следует выбирать большей 680 ом; при питании от трех батарей может не хватить запаса выходного напряжения ОУ DA1. Как уже говорилось, очень важно обеспечить точность работы вычитающего усилителя, для этого следует тщательно отобрать четыре одинаковых резистора (R3, R4, R5 и R8). Остальные резисторы (с допуском 1%) отбирать не нужно. Для облегчения расчета величин резисторов, в приложении дан файл RCalc.xlsx.

 

Калибровка.

 

Перед использованием устройство необходимо откалибровать. Для калибровки подойдет любой резистор в диапазоне 100-200 ом (его номинал нужно выбрать таким, чтобы на табло омметра было как можно больше значащих цифр). Величину сопротивления этого резистора нужно измерить омметром и затем подключить его в качестве Zx к устройству. Далее нужно точно измерить значение преобразованного сопротивления (см. пункт «Измерение сопротивления с повышенной точностью») и отрегулировать подстроечным резистором R7 коэффициент преобразования так, чтобы значение сопротивления резистора в омах было равно показанию омметра в килоомах.

 

Проведение измерений.

 

Для измерения сопротивлений и оценки емкости нужно измеряемый резистор или конденсатор подключить ко входу Zx и измерить сопротивление (емкость) на входе устройства. Полярность подключения щупов может быть любой. Иногда, при измерении относительно больших сопротивлений (малых емкостей), для получения результата может понадобиться выключить и заново включить питание устройства, не отключая измерительные цепи.

Следует обратить внимание, что перед измерением конденсаторов их следует тщательно разрядить. Устройство не содержит защиты от подключения заряженного конденсатора!

Необходимо также отметить, что на точность измерения емкости оказывают влияние частотные характеристики примененных ОУ. Отсутствие эталонной емкости величиной в несколько тысяч микрофарад не позволило достоверно оценить степень этого влияния. И, хотя, показания прибора выглядят более чем правдоподобно, речь может идти лишь об оценке измеряемой емкости. Тем не менее, устройство позволяет легко провести отбор и разбраковку конденсаторов большой емкости, а также определение их номинала.

 

Измерение сопротивления с повышенной точностью.

 

В данном устройстве измерение сопротивления производится на постоянном токе, причем получение результата связано с измерением малых величин напряжений. Очевидно, что различного рода паразитные потенциалы оказывают существенное влияние на точность. Тем не менее, существует способ, позволяющий значительно снизить это влияние. Для этого нужно провести измерение сопротивления два раза, подключив щупы омметра (мультиметра) в разной (противоположной) полярности. В качестве результата нужно взять среднее арифметическое этих измерений, тогда влияние паразитных факторов взаимно скомпенсируется.

 

Файлы:
Приложение

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

инструкция по измерениям, резистор и нелинейные элементы

Замечали, что при измерениях сопротивления в начальный момент на дисплее мультиметра начинают мелькать циферки, останавливающиеся на неком значении. Внутри применяются цифровые алгоритмы, не дающие мгновенно получить нужный ответ. Особенно трудно приходится проводящим измерение малых сопротивлений мультиметром. Точность его невелика, дробные части найти не получится. Как мультиметром проверить сопротивление – тема сегодняшнего обзора.

Измерение сопротивлений мультиметром

В отличие от ёмкостей сопротивление умеет измерять каждый тестер. Это простая операция. Фокус в том, что механические модели работают с напряжением без батарейки, а для оценки параметров резисторов нужен некий заряд для формирования вспомогательного напряжения. Разумеется, ограничения возможно обойти путём создания резистивного делителя, пользуясь внешним источником – к примеру, розеткой. Отличие цифровых мультиметров – без подпитки приборы не работают.

Цифровой мультиметр

Цифровой мультиметр

Минусом современных моделей считается ограниченность шкалы. Хочешь сопротивление резистора мультиметром измерить, а натыкаешься на сплошные трудности. Максимальный предел не превышает 2000 кОм. Это лишь 2 МОм, радиолюбители знают, что это далеко не верхняя граница для достойного резистора. Сопротивление изоляции электрических приборов должно составлять 20 МОм. Проверить его качество при помощи рядового мультиметра не получится. Первое правило измерения сопротивления мультиметром: «Размер шкалы соответствует измеряемому значению».

Понять соответствие непросто. В былые времена номинал проставлялся на корпусе резистора. Для слишком малых моделей сложно разглядеть цифры. От габаритов номинал не зависит. Приходится гадать: малютка на пару Ом или МОм. Разница в миллион раз, ошибиться не хочется. Большинство резисторов сегодня маркируются цветными полосами. Не стоит учить таблицу наизусть. Советуем пользоваться простой методикой: найти в интернете онлайн-калькулятор для решения собственных задач. Подобный находится по адресу http://www.chipdip.ru/info/rescalc/.

Все оформлено в виде таблицы, причём показано, что резисторы маркируются четырьмя или пятью полосами. Допустимые цвета приведены в строках сформированной авторами сайта таблицы. Номера полос идут по столбцам. Выбор нужной гаммы происходит в виде кликов по радиобоксам. Для каждой полосы возможен единственный цвет. В верхней части текущие изменения отображаются на схематически нарисованном резисторе, что добавляет удобства. Обычно крайняя полоса толще остальных, на практике это невозможно заметить.

Тогда стараются достать схему прибора, чтобы сориентироваться. Если примерный номинал известен, ошибиться сложно. Во вторую очередь смотрят на полосы. К примеру, золотой и серебристый цвет встречаются исключительно с крайней тонкой полосы. На практике отличить от жёлтого и серого сумеет редкий человек. Без опыта слишком сложно. Потребуется завести на калькулятор оба варианта (слева направо и справа налево), потом начинать измерения мультиметром с максимального из полученных номиналов.

Итак, для получения значения в онлайн-калькуляторе потребуется проставить все полосы. В режиме реального времени на Чип&Дип работать не получится – маленький недостаток. В результате усилий в текстовом поле появляются:

  1. Номинал резистора, сопротивление в стандартных единицах. К примеру, омах.
  2. Через запятую идёт допуск на точность. Худшие резисторы показывают отклонение в 10% (в обе стороны по отдельности). В результате разброс номиналов сопротивлений  сильный. Поэтому требуется проверка сопротивления мультиметром.

Форма калькулятора не лучшая, зато находится на сайте известного магазина Чип&Дип, где возможно заказать нужные детали. Сообразно найденной величине выставляется шкала мультиметра с запасом. Допустимо, для резистора на 10 кОм предел составляет 20k. Напоминаем, что на лицевой панели группа шкал измеряющих сопротивление помечается греческой буквой омега Ω.

Как проверить резистор мультиметром

Обычно проверка начинается с измерения номинала, как показано выше. На дисплее появится соответствующая цифра. Обратите внимание, параметр номинала способен сильно разниться, сохраняя допуск на точность. Точность цифрового мультиметра составляет 0,5 Ом, прибор показывает лишь целые значения. Принимая во внимание, что дополнительно присутствует и внутреннее сопротивление мультиметра, оценить параметры резистора с малым номиналом невозможно.

Проверка резистра

Проверка резистра

Важные замечания:

  • При измерении сопротивления иногда показания близки к нулю, либо наоборот – фиксируется обрыв. Значит, резистор вышел из строя. В первом случае замкнуло ближайшие витки, во втором – перегорела нить. Большинство резисторов состоит из керамического основания и намотанной на него высокоомной жилы. Каждый элемент характеризуется максимальной мощностью рассеивания, указываемой в технических данных. Если параметр превышен, случаются описанные выше эффекты. Часто корпус резистора темнеет. Не любая чернота означает поломку – в большинстве случаев краска менее устойчива к нагреву, нежели жила, и темнеет.
  • Немало зависит от допуска. Дешёвые резисторы даже в одном наборе отличаются на 15 и более процентов. Не значит, что мультиметр врёт, просто нужно учитывать сей факт при сборке схемы. Подходить с умом. Если написано, что требуется получить резистивный делитель с равными плечами по 100 Ом, страшного не случится, если взять номиналы по 90 Ом. Главное, соблюдать равенство.

Параметры малых сопротивлений требуется оценивать косвенными методами. Допустим, собрать резистивный делитель, как показано на рисунке. Дадим краткие пояснения. Во-первых, видим два резистора, причём один эталонный. Это небольшого номинала сопротивление с минимальным допуском 0,05% (серая полоса, не серебряная). Что обеспечит максимальную точность при работе. Напряжение питания +12 В взято не случайно. Это максимальный номинал, легко добываемый, к примеру, использовав блок питания от персонального компьютера. Чем выше напряжение, тем точнее измерения. Добрались до главной тонкости: вольтаж может быть измерен с потрясающей точностью – до десятых долей мВ.

Схема сборки резистивного делителя

Схема сборки резистивного делителя

Это поможет определить разность потенциалов на исследуемом резисторе. Потом номинал вычисляется из пропорции: (12 — U) / U = Rэт / R. Где Rэт – сопротивление эталонного резистора, а U — измеренное значение (см. рисунок). На картинке показано, куда подключать щупы мультиметра, земля берётся от источника питания (часто чёрный провод). Посмотрим выгоды применения схемы. Допустим, есть резистор номиналом 1,5 Ом с допуском 10%. Очевидно, что прямое измерение сопротивления даст на дисплее значение 1 или 2. Этого явно недостаточно. Теперь берём эталонный резистор номиналом 2,7 Ом, собираем схему и видим значение напряжения 4,4 В. Посчитаем пропорцию:

(12 — 4,4) / 4,4 = 2,7 / R;

откуда находим, что R = 1,56 Ом. Мы не смогли бы замерить сопротивление мультиметром при столь малых значениях номинала. Вдобавок точность великая – до сотых долей! Главное – становится понятно, что резистор соответствует технической документации и годится для применения по назначению. Описанным методом допустимо сопротивление провода попробовать измерить, при большой длине. К примеру, километр медной жилы сечением 6 кв. мм составляет несколько ом. Сопротивление кабеля ниже, речь пойдёт о целой бухте.

Помните, для измерения сопротивление контура заземления потребуется найти опорную точку. Это контур, который гарантированно заземлён. Либо потенциал снимать с Uэт, а формулу сообразно переделать под требуемый случай. Кстати, нет нужды использовать именно напряжение 220 В переменного тока. +12 В намного безопаснее, не факт, что точность станет ниже, учитывая наличие среди шкал цифрового мультиметра предела 200 мВ. Это позволит при наличии хорошего эталонного резистора сопротивление заземления мультиметром измерить крайне точно.

Проверка сопротивления

Проверка сопротивления

Измерение мультиметром сопротивления нелинейных элементов

На уроках по элементной базе говорили, что в открытом состоянии падение напряжения на кремниевом диоде превышает вдвое показатели германия. А полупроводниковые элементы изготавливаются и из арсенида галлия. Перед оценкой сопротивления диода в прямом направлении, нужно понимать, что перед нами нелинейный элемент. Его характеристики зависят от приложенного напряжения. Сопротивление, измеренное разными мультиметрами, не будет одинаковым: каждый тестер формирует на щупах вспомогательное напряжение, для разных приборов неодинаковое.

Чтобы сориентироваться на вольт-амперной характеристике диода (график, где показывается зависимость выходного тока от напряжения приложенного к контактам), потребуется узнать характеристики мультиметра. Нередко вспомогательные величины в паспорте не указываются, потребуется провести тест. Возьмите конденсатор средней ёмкости. Зарядим вспомогательным напряжением. Ставим диапазон на измерение сопротивления и, не забывая про полярность (красный щуп – плюс), прикладываем к конденсатору. Когда сопротивление на дисплее завершит забег от нуля до бесконечности, переходим к измерению постоянного напряжения (не забывая про полярность).

В итоге получается в наличии значение вспомогательного напряжения. Теперь при помощи него возможно найти ток: I = U / R, где R считывается с дисплея в режиме измерения сопротивления (аналогичное происходит с режимом прозвонки диодов, помеченных характерной жирной стрелкой с поперечной чертой на конце). Теперь смотрим на вольт-амперную характеристику и смотрим, совпадает ли полученная точка с положением пересечения U и I. Если отклонение в пределах нормы, диод однозначно годный. В противном случае, если диод открывается и закрывается, деталь допустимо использовать в цепях, не критичных к точности.

Измерение мультиметром сопротивлений приборов

Если взять лампочку на 60 Вт, легко быстро убедиться, что сопротивление спирали составляет лишь 68 Ом. При приложенном напряжении 220 В по приспособлению протекал бы ток более 3 А, что соответствует мощности 700 Вт. Причина в характере переменного напряжения 50 Гц. Проверка сопротивления тена электроплиты производится с учётом указанного простого факта. В разговоре об акустике подразумевается некая средняя частота для спектра звука, составляющая, к примеру, 2,5 кГц. Потому сопротивление свечи зажигания и сопротивление динамика призваны измеряться косвенными методами в условиях, приближенных к реальным. Собирается делитель, создаётся тестировочная схема.

А сопротивление катушки зажигания возможно измерить тестером. Для этого придётся найти полные технические данные о количестве витков и сечении провода.

Миллиомметр — приставка к мультиметру

Измерительная техника

Главная  Радиолюбителю  Измерительная техника



Приставка совместно с цифровым мультиметром серий М-83х, DT-83x позволяет проводить измерения малых активных сопротивлений с дискретностью 0,001 Ом. Как и предыдущие приставки, разработанные автором, она питается от внутреннего стабилизатора АЦП мультиметра.

Известно, что мультиметры серий М-83х, DT-83x обладают малой погрешностью измерения напряжения постоянного тока. Причём эту погрешность всегда можно минимизировать, откалибровав прибор подстройкой образцового напряжения (100 мВ). Поэтому, по мнению автора, разработка и повторение приставок для мультиметра, преобразующих ту или иную измеряемую величину в постоянное напряжение на его входе «VΩmA», могут представлять интерес для определённой части радиолюбителей как с финансовой точки зрения, так и с творческой. При доступности элементной базы и её стоимости из таких приставок можно собрать неплохой измерительный комплекс для домашней лаборатории, не прибегая к покупке дорогих измерительных приборов, причём зачастую с погрешностью измерений, приближающейся к погрешности самого мультиметра. Очередная такая приставка — миллиомметр — представлена ниже. Она позволяет измерять малые активные сопротивления резисторов, что особенно важно при их самостоятельном изготовлении из отрезков проводов с высоким удельным сопротивлением, например, для различных шунтов.

Основные технические характеристики

Интервал измерения, Ом …………..0,001…1,999

Погрешность измерения сопротивления в интервале 0,2…1,999 Ом, %, не более * ……………………..2

Напряжение питания, В …………3

Ток потребления, мА, не более …………………..2,5

__________
* Погрешность измерения тщательно налаженного устройства в указанном выше интервале практически сводится к погрешности мультиметра в режиме измерения постоянного напряжения на пределе 200 мВ через 5…10 мин после включения приставки при замкнутых измерительных зажимах.

Существуют два простых способа измерения низкоомных резисторов. Первый — подавать через измеряемый резистор небольшой ток (единицы мА) с последующим усилением падения напряжения на измеряемом резисторе. Однако это потребует применения в усилителе постоянного тока дорогостоящих и не всем доступных прецизионных ОУ с малым напряжением смещения нуля и его уходом от изменения температуры. Второй — более простой и менее затратный — подавать больший ток (например, 100 мА) и непосредственно измерять падение напряжения на резисторе. В случае наличия соответствующего источника постоянного тока (ИТ) так и поступают. На первый взгляд, при питании миллиомметра от АЦП мультиметра такой возможности нет. Но существует ещё и импульсный метод, когда ток от ИТ для измерения подают короткими во времени импульсами по отношению к их периоду. При этом средний ток измерения, как известно, снижается пропорционально скважности импульсной последовательности.

Этот метод, как и в некоторых предыдущих разработках, например [1, 2], использован для измерения малых сопротивлений.

Схема приставки приведена на рис. 1. Рассмотрим работу приставки при подключённом к зажимам ХТ3, ХТ4 измеряемом резисторе Rx.

Рис. 1. Схема приставки

На логическом элементе DD1.1 — триггере Шмитта (ТШ), элементах VD1, C1, R1, R2 собран генератор импульсов. Период повторения импульсов — 150…160 мкс, пауза — 3…4 мкс. При указанном на схеме включении диода VD1 генератор потребляет минимальный ток, что связано с особенностью разного потребления тока ТШ при его переходе из состояния логического нуля в логическую единицу и обратно [3]. Когда напряжение на входе уменьшается от высокого уровня к низкому (на выходе уровень логического нуля), сквозной ток через выходные транзисторы ТШ в 2…4 раза больше, чем в обратном случае. Эта особенность, по наблюдениям автора, проявляется во всех ТШ буферизированной логики КМОП. Поэтому, если время разрядки конденсатора С1 сократить введением цепи VD1R2, средний ток потребления генератором импульсов при питании 3 В для серии 74НС будет равен 0,2 мА вместо 0,5…0,8 мА. Элементы DD1.2 и DD1.3 — инверторы, на выходе которых длительность импульсов равна 3…4 мкс, а пауза — 150…160 мкс. Они включены параллельно для повышения нагрузочной способности.

На транзисторе VT1 собран источник тока. Диод VD2 — термокомпенсирующий. Ток ИТ задан равным 100 мА. При таком токе на резисторе сопротивлением 2 Ом падение напряжения равно 200 мВ, что соответствует пределу измерения в мультиметре «200 mV». ИТ задаёт ток для измерения только при появлении паузы на выходе генератора импульсов на DD1.1, когда резистор R4 на время 3…4 мкс через этот выход подключён к общему проводу. «Ускоряющий» конденсатор С2 уменьшает время переключения транзистора VT1 для получения на измеряемом резисторе Rx прямоугольных импульсов. Инвертированные импульсы с выходов элементов DD1.2, DD1.3 поступают на затвор полевого транзистора VT2, включённого как синхронный детектор. На время действия импульса ток от ИТ проходит через измеряемый резистор, создавая на нём падение напряжения, которое через открытый транзистор VT2 синхронного детектора поступает на «запоминающий» конденсатор С4, заряжая его до падения напряжения на резисторе. Напряжение с конденсатора через клеммы XP2, XP3 поступает на вход «VΩmA» для измерения. По окончании импульса оба транзистора закрываются на время 150…160 мкс до появления следующего. Сглаживающий конденсатор С3 ёмкостью 220 мкФ устраняет в линии питания импульсный характер тока потребления приставкой, поддерживая его на уровне около 2,5 мА для встроенного стабилизатора напряжения +3 В АЦП мультиметра. Этот ток нетрудно определить, учитывая, что скважность импульсов на выходе инверторов DD1.2, DD1.3 равна 40…50 (100 мА/ (40…50)).

Узел на полевом транзисторе VT3 и элементах R8, C5 служит для ограничения тока зарядки конденсатора С3 от стабилизатора напряжения АЦП на уровне не более 3 мА с момента подачи питания в течение 5 с. При подаче питания напряжение на конденсаторе С5 начинает расти за счёт протекания зарядного тока через резистор R8. Когда оно достигнет порогового для транзистора VT3, последний начинает плавно открываться, обеспечивая ток зарядки конденсатора С3 на безопасном для стабилизатора АЦП уровне. Резистор R7 и диод VD3 обеспечивают разрядку конденсатора С5 после отключения питания.

Приставка собрана на плате из фольгированного с одной стороны стеклотекстолита. Чертёж печатной платы и расположение на ней элементов показаны на рис. 2. Фотография собранной приставки представлена на рис. 3.

Рис. 2. Чертёж печатной платы и расположение на ней элементов

Рис. 3. Фотография собранной приставки

Конденсаторы, резисторы и диоды — поверхностно монтируемые. Конденсаторы С1, С2, С4 — керамические типоразмера 1206, С3, С5 — танталовые типоразмеров С и В. Все резисторы — 1206. Немного подробнее следует сказать о транзисторе 2SA1286 (VT1) [4]. Он заменим, например, 2SA1282, 2SA1282А с коэффициентом передачи тока h21Э не менее 500 (дополнительный индекс G) [5]. Возможна замена и на другие аналогичные с меньшим h21Э (до 300), при этом сопротивление резистора R4 следует уменьшить до 1,8…2 кОм. Главное — проверить в документации или экспериментально, чтобы пологая часть выходной характеристики транзистора при токе коллектора Iк 100 мА начиналась с напряжения Uкэ не более 0,5 В. В противном случае на указанную погрешность измерения рассчитывать не придётся — она может быть существенно больше. Полевой транзистор IRLML2402 (VT2) заменим, например, FDV303N, а IRLML6302 (VT3) — BSS84. При иной замене следует учесть, что пороговое напряжение транзисторов, сопротивление открытого канала и входная ёмкость (Ciss) должны быть сопоставимы заменяемым.

Штырь ХР1 «NPNc» — подходящий от разъёма или отрезок лужёного провода подходящего диаметра. Отверстие под него в плате сверлят «по месту» после установки штырей ХР2, ХР3. Штыри ХР2 «VΩmA» и ХР3 «СОМ» — от щупов для мультиметра. Неразъёмные соединения XT 1, XT2 — лужёные пустотелые медные заклёпки, пропаянные с предназначенными для них контактными площадками на печатной плате. В заклёпки вставлены и пропаяны облуженные концы гибкого провода МГШВ сечением 0,5…0,75 мм2, заканчивающиеся зажимами XT3, XT4 типа «крокодил». Длина каждого провода — 10…12 см. Нижние внутренние поверхности «пасти» зажимов облуживают. Концы проводов, идущих к ним, облуживают, затем протаскивают в нижние «пасти» зажимов и припаивают. Припой следует нанести с излишком, который затем опиливают надфилем до уровня зубьев «крокодила», как показано на фотографии рис. 4.

Рис. 4. Зажимы с припоем

Приставка требует налаживания. При работе с ней переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе «200 mV». Показания с учётом высвечиваемой запятой следует делить на 100. Перед подключением приставки к мультиметру следует проконтролировать потребляемый ею ток от другого источника питания напряжением 3 В, имеющего защиту по току, чтобы не вывести из строя встроенный маломощный стабилизатор напряжения питания АЦП в случае неисправности какого-либо элемента или случайного замыкания токоведущих дорожек платы.

Подключите приставку к мультиметру и замкните зажимы XT3, XT4, «закусив» их «пасти» с напаянными площадками друг на друга. Дайте установиться тепловому режиму транзистора VT1 в течение 5…10 мин. Несмотря на то что корпус транзистора холодный на ощупь, кристалл внутри корпуса даже от коротких импульсов тока 100 мА за это время нагреется и его температура стабилизируется. Для облегчения налаживания резисторы R3 и R6 на плате составлены из двух, соединённых параллельно. На рис. 2 они обозначены как R3’, R3” и R6’, R6”. Через 5…10 мин подберите резистор R6’ так, чтобы показания индикатора мультиметра оказались в интервале 0.+0,5 мВ, а затем подбором дополнительного резистора R6” большего сопротивления установите «чистый» ноль (±0 мВ). Далее, подключив к зажимам XT3, XT4 заведомо измеренный резистор Rx, например, 1 Ом, резисторами R3’ и R3” установите соответствующие показания на индикаторе мультиметра. Для уменьшения погрешности измерений указанные операции следует повторить до получения нужного результата. На рис. 5 показана фотография приставки с мультиметром при измерении проволочного резистора С5-16МВ мощностью 2 Вт с номинальным сопротивлением 0,33 Ом и допуском ±5 %.

Рис. 5. фотография приставки с мультиметром

При изменении печатной платы свободные входы элементов микросхемы DD1 следует соединить с плюсовой линией питания или с общим проводом.

Чертёж печатной платы в формате Sprint LayOut 5.0 можно скачать здесь.

Литература

1. Глибин С. Измеритель ЭПС — приставка к мультиметру. — Радио, 2011, № 8, с. 19, 20.

2. Глибин С. Замена микросхемы 74АС132 в измерителе ЭПС. — Радио, 2013, № 8, с. 24.

3. 74HC14, 74HCT14. Hex inverting Schmitt trigger. — URL: http://www.nxp.com/ documents/data_sheet/74HC_HCT14.pdf (6.04.15).

4. 2SA1286. — URL: http://pdf.datasheetcatalog.com/datasheets2/14/ 147003_1.pdf (6.04.15).

5. 2SA1282, 2SA1282A. — URL: http://pdf. datasheetcatalog.com/datasheets2/16/ 163185_2.pdf (6.04.15).

Автор: С. Глибин, г. Москва

Дата публикации: 29.10.2015

Рекомендуем к данному материалу …


Мнения читателей
  • Юрий / 30.01.2018 — 08:37
    Меня заинтересовала,пиши мне на почту [email protected]
  • Александр / 17.05.2017 — 22:40
    Кого интересует разводка плат в тестер,-пишите -sasha77760@Rambler,RU
  • Александр / 17.05.2017 — 22:06
    Прекрасные схемы измеритель esr+ИЗМЕРИТЕЛЬ резисторов 0—1.999 ом, причем обе приставки умещаются внутри прибора, только нужно вывести разьемы и поставить 2 малогабаритных переключателя тоже внутри тестера!

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


YR1030, миллиомметр для измерения малых сопротивлений и внутреннего сопротивления аккумуляторов

Я выкладывал довольно много обзоров аккумуляторов и меня часто спрашивали — почему в обзорах нет измерения внутреннего сопротивления этих аккумуляторов. Ответ обычно был один — имеющиеся у меня приборы не позволяют измерять этот параметр корректно, потому смысла в измерениях нет. Но относительно недавно я разжился специализированным прибором, как раз предназначенным для подобных измерений.
Данное устройство относится к очень специфическому классу измерительных приборов, но допускаю что оно может пригодиться не только в работе с аккумуляторами.

Заказывался прибор на ТаоБао, в магазине известного китайского, даже не знаю как точно назвать, пусть будет кастомайзера — 100 MHz. На самом деле разницы где заказывать прибор особо не было, просто на тот момент у него была самая низкая цена, а кроме того у него же были и низкоомные резисторы.

Для начала что такое — внутреннее сопротивление аккумуляторов. Я не буду много расписывать и попробую пояснить хоть и грубо, но надеюсь что наглядно.
Представьте что существует идеальный аккумулятор, он не имеет ни саморазряда, ни внутреннего сопротивления, вот такой себе "сферический конь в ваккууме". Этот идеальный элемент находится внутри вашего аккумулятора, но также внутри него есть два неких резистора, один называется Rs, он включен последовательно с аккумулятором, второй — Rp, он соответственно включен параллельно, при этом:

Rs — это сопротивление и является — внутреннее последовательное сопротивление, оно отвечает за ток, который способен отдать аккумулятор.
Rp — а это сопротивление, которое разряжает ваш аккумулятор пока он лежит на полке.

Вообще все это несколько сложнее чем такая вот схематическая пара резисторов, так как аккумулятор является химическим элементом, но для общего понимания более чем достаточно.

Справа вторая схема, снаружи аккумулятора показаны также паразитные сопротивления, например контакты холдера, которые увеличивают последовательное сопротивление, и к примеру ваша схема, которая может иметь небольшое сопротивление и также разряжать аккумулятор.

Справедливости ради точно такая же картина наблюдается к примеру и у конденсаторов и называется этот параметр ESR (Эквивалентное Последовательное Сопротивление). Даже обычный дроссель из-за активного сопротивления обмотки тоже можно условно считать имеющим данный параметр.

И если в случае внешних компонентов мы можем что-то улучшить, например применить более качественные холдеры, а то и вообще припаять провода напрямую к аккумулятору, промыть плату или использовать менее потребляющие компоненты чтобы уменьшить утечки. То в случае внутренних параметров можно действовать только косвенно, например изменением температуры. С ростом температуры оба сопротивления уменьшаются и чтобы аккумулятор имел меньше саморазряд, то его хранят в прохладном месте, а чтобы имел меньшее внутреннее сопротивление, то используют "теплым".

Как же это все выглядит в реальной жизни, а не на виртуальных схемах.
Берем к примеру пару аккумуляторов, US18650VTC4 и LGDBHG21865 (более известные как шоколадки).

Так как внутреннее сопротивления является важным параметром, то оно почти всегда обозначается в даташите, например у первых оно составляет 12 мОм (0.012 Ома)

А у вторых до 17 мОм.

Фактически, внутреннее сопротивление и влияет на нагрев аккумулятора, проявляется это при работе под большим током.
Например 12 мОм при 15 Амперах дадут 0.18 Вольта падения, если 0.18 умножить на 15, то получим 2.7 Ватта в тепло.
Для второго аккумулятора все еще хуже, 17х15=0.255 Вольта и 0.255х15=3.825 Ватта.

Конечно это все очень грубо и утрированно, но наглядный пример ниже на фото, после полного разряда током 15 Ампер температура первого 70 градусов, а второго почти 80. Но кроме температуры больше падение напряжения под нагрузкой, что может быть критично для мощных потребителей, например электронных сигарет, электроинструмента, а также различных квадрокоптеров, машинок и пр.

Для измерения данного параметра можно использовать различные инструменты, но наиболее правильным является применение специализированных приборов и я в ходе обзора попробую объяснить, почему, а пока перейду к собственно обзору.

Получил я свой заказ упакованным в раздельные пакетики, в одном лежал прибор, во втором резисторы, так как они были заказаны вторым лотом.
Всего получается что я имею:
Прибор
Шупы к прибору
Тестовые резисторы.

Вариантов дополнительной комплектации у продавца много, я выбрал вариант прибор + щупы и его цена указана в заголовке, а также набор резисторов.

Резисторы были заказаны для последующей проверки точности работы прибора, как обозреваемого, так и других, имеющихся в хозяйстве. Стоит у продавца такой набор 1.64 доллара (на момент заказа было 1.48), что очень даже неплохо.
Номиналы резисторов
1. 1 мОм 1%
2. 2.2 мОм 0.5%
3. 10 мОм 0.5%

Резисторы имеют четырехпроводное подключение, рассчитаны на мощность до 10 Ватт и имеют возможность установки на радиатор.

А так как резисторы фирменные, производства Isabellenhutte, то бы найден и даташит на них, где указаны как параметры резисторов, так и их внутренняя конструкция. Из даташита можно узнать, что выпускаются резисторы и с точностью 0.1%, но у меня только 0.5 и 1.0%, что также неплохо, особенно при таких малых номиналах.

В комплекте были щупы в четырехпроводном варианте. Вообще практически во всех подобных приборах используется именно четырехпроводная схема подключения измеряемого компонента.

Здесь я процитирую мое же пояснение по поводу четырехпроводного подключения из другого обзора.

При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление.
Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.

Если говорить об измерении внутреннего сопротивления аккумуляторов, то подавляющее большинство популярных зарядных устройств типа Опуса, Литокалы, Аймакса и пр. используют двухпроводную схему. В моей электронной нагрузке, которую я использую для тестирования аккумуляторов подключение четырехпроводное, но провода соединяются около крокодилов и к аккумулятору подключаются в двух точках и даже если переделать кассету для аккумулятора так, чтобы подключение было четырехпроводным, ничего особо это все равно не даст, так как практически все эти устройства измеряют сопротивление при постоянном токе.

Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылезает в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.

В реальной жизни это выглядит примерно так, как показано на схеме.

Но в случае измерения внутреннего сопротивления аккумуляторов, впрочем как и конденсаторов, использовать проверку постоянным током некорректно. Обусловлено это тем, что здесь принимает участие и химия, а также процессы происходящие в процессе заряда/разряда.
Потому принято измерять внутреннее сопротивление аккумуляторов на частоте 1 кГц, хотя у некоторых аккумуляторов указано сопротивление и для режима с постоянным током, на скриншоте заметно что значение при этом может значительно отличаться (верхнее при переменном, нижнее при постоянном). И если четырехпроводную схему еще можно "допилить", то сделать прибор с измерением при переменном токе несколько сложнее. Такой принцип используется в правильных тестерах аккумуляторов и измерителях ESR конденсаторов, да и вообще в LCR измерителях

Собственно это и есть ответ на вопрос, почему я не измеряю и другим не рекомендую это делать при помощи распространенных устройств "бытового" уровня, которые не имеют ни четырехпроводной схемы подключения, ни режима измерения на переменном токе.

Щупы представляют собой конструкцию из четырех подпружиненных контактов, вставленных в металлические трубки. В руках держать удобно, провода правда коротковаты, но довольно мягкие. Подключение к прибору при помощи USB разъема.
Также в комплекте дали четыре запасных контакта, часть которая подключается к тестируемому элементу выполнена в виде розочки, потому довольно неплохо держится на выводе компонента и не соскакивает.

Вариант подключения с использованием USB разъема выглядит несколько спорным, но лично на мой взгляд более чем удобен, а помимо нормального контакта еще и легко ремонтируемым.

К внешнему оформлению прибора претензий почти нет, аккуратная серая коробочка.

Все обозначения на кнопках выполнены на английском и китайском языках, впрочем и кнопок всего четыре, потому запутаться очень тяжело.

Краткие характеристики прибора есть снизу корпуса, полные выглядят следующим образом:
Измерение сопротивления
Диапазон 20 мОм, разрешение 0,01 мОм, погрешность 0,7% + 7зн (когда включена функция ZR)
Диапазон 200 мОм, разрешение 0,1 мОм, погрешность 0,5% + 5зн
Диапазон 2 Ом, разрешение 1 мОм, погрешность 0,5% + 5зн
Диапазон 20 Ом, разрешение 10 мОм, погрешность 0,5% + 5зн
Диапазон 200 Ом, разрешение 0,1 Ом, погрешность 0,6% + 5зн

Измерение напряжения
Диапазон 2В, разрешение 0,001В, погрешность 0,8% + 5зн
Диапазон 20 В, разрешение 0,01 В, погрешность 0,8% + 5зн
Диапазон 28 В, разрешение 0,1 В, погрешность 0,8% + 5зн

На одном из торцов находится разъем подключения щупов и microUSB для заряда аккумулятора прибора. Когда делал фото, то обратил внимание что надписи "вверх ногами", потом у подумал что все логично, когда подключаете разъемы, то держите прибор экраном к себе и надписи читаются правильно, чаще встречал наоборот 🙂

Кнопка Power выполняет сразу несколько функций:
1. Собственно включение
2. При длительном нажатии — выключение, но дается запрос да/нет, "да" находится слева и это соответственно средняя кнопка.
3. При коротком нажатии вход в меню настроек, второе нажатие — выход из меню

Также коротким нажатием можно включить подсветку на примерно 10-15 секунд, подсветка умеет автоматически включаться при появлении напряжения на входе прибора, т.е. при подключении аккумулятора.

Справа расположены две кнопки — Range R и Range U, первая переключает диапазоны измерения сопротивления (авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом), вторая отвечает за диапазоны измерения напряжения (авто, 2 В, 20 В, 28 В).
У меня все время прибор работал в режимах авто, автопереключение быстрое, проблем не обнаружено, хотя пару раз в краях диапазонов не всегда переходило, но в данном случае это влияние гистерезиса автоматики.

1, 2. Средняя кнопка обозначена как HoldZEROR. Короткое нажатие — функция фиксации показаний, длительное — отключение функции автоматического удержания нуля. По умолчанию функция ZEROR включена (ZR на экране), а все измерения проводил именно в таком режиме. Можно запустить ее принудительно включив/выключив.
3, 4. Меню, вот здесь полный ад и рай одновременно, по пробую пояснить.
Ад — все на китайском, причем как я понял, большая часть приборов идут именно с китайским.
Рай — В нормально работающем и настроенном приборе вам делать нечего, все нормально работает "из коробки".

В интернете я нашел англоязычный вариант меню из которого следует что имеется:
1. Нормальный режим
2. Режим сортировки компонентов.
3. Время работы подсветки, 5-60 секунд
4. Время автовыключения прибора и перехода в энергосберегающий режим
автоотключение 5-60 минут
энергосберегающий режим — 5-30 минут
5. Настройка режима сортировки аккумуляторов
A — RaUxa(установленное значение)
B — RbUxb(установленное значение)
C — RcUxc(установленное значение)
6. Количество аккумуляторов в режиме сортировки
7. Калибровка
8. Сброс настроек на заводские
9. Ток заряда аккумулятора — 200/400 мА, по умолчанию 200 мА. Последний пункт в старой версии прибора отсутствует, хотя как по мне, то он особо и не нужен.

А вот те же самые меню, только на китайском языке, порядок тот же что и выше
2. Режим сортировки компонентов.
3. Время работы подсветки, 5-60 секунд
4. Время автовыключения прибора и перехода в энергосберегающий режим
автоотключение 5-60 минут
энергосберегающий режим — 5-30 минут
5. 6 Настройка режима сортировки аккумуляторов
A — RaUxa(установленное значение)
B — RbUxb(установленное значение)
C — RcUxc(установленное значение)
7. Количество аккумуляторов в режиме сортировки
8. Калибровка
9. Сброс настроек на заводские
10. Ток заряда аккумулятора — 200/400 мА, по умолчанию 200 мА. Последний пункт в старой версии прибора отсутствует, хотя как по мне, то он особо и не нужен.

Попутно небольшое пояснение по управлению в меню, которое на мой взгляд крайне неудобное.
Power — кнопка выбора необходимого пункта меню, она же кнопка выхода из пункта меню без сохранения настроек.
Hold — Кнопка сохранения параметра и выхода из подпункта меню.
Range R — Изменение выделенного параметра, только в плюс, эта же кнопка перемещает пункты меню вверх.
Range U — Перемещение по меню, а также внутри меню, при этом перемещение только вниз.

Если не уверены в выбранном параметре, нажимаете Power, если хотите сохранить — Hold, меняем параметр — Range R, выбираем какой параметр менять — Range U. Для выхода из меню надо выбрать пункт 1 и нажать Power.

Энергосберегающий режим, вывод нажатием кнопки — power.

Снизу корпуса находится четыре самореза, потому устройство разбирается очень легко. правда у меня дисплей приклеился к фальшпанели, еле отклеил.


Конструкция на вид хоть и не промышленная, но очень качественная.

Снизу установлен аккумулятор, емкость не проверял, как и время автономной работы. но неделю тестировал устройство в разных режимах, прибор как работал, так и работает, кушать пока не просит 🙂

Да, на этом этапе можно сказать, что обзор станет чуть короче, почти на всех микросхемах маркировка сошлифована 🙁

Но на всякий случай чуть поближе.
Узел питания, заряда аккумулятора и кнопки управления. Приятно удивило наличие на плате предохранителя в цепи аккумулятора, хотя сам аккумулятор также имеет собственную защиту.

"Мозги", видео явно микроконтроллер, а также пара подстроечных резисторов, предположительно один регулирует контраст дисплея, второй скорее всего стоит где нибудь в цепи коррекции, но ничего утверждать не могу и лучше их вообще не трогать.

Снизу "пищалка" и больше ничего.

Перед тестами пару слов о нюансах
1. Просто общий вид экрана, при разомкнутых щупах показывает перегрузку.
2. Если соединить щупы друг с другом, выводит 0
3,4. Но что удивило, при попытке измерить сопротивление кожи показывает ерунду. Хотя уже потом я понял что все логично, ведь прибор четырехпроводной и ему надо и соединение одноименных щупов.

Первым делом решено было проверить шунты. Хотя по большому счету это особо значения не имеет, так как результат будет зависеть от точности самого шунта и погрешности двух мультиметров одновременно.
Использовались два мультиметра:
UT61E в режиме измерения тока
UT181A в режиме измерения напряжения.

Возможно следовало подключить их наоборот, но этот эксперимент я уже не проводил.

Проверка проходила при двух контрольных значениях тока 1 и 5 Ампер, результаты измерения показали что:
Шунт 1 мОм имеет 0.997 мОм и 1.0008 мОм
Шунт 2.2 мОм — 2.206 мОм и 2.2076 мОм
Шунт 10 мОм — 10.021 мОм и 10.0214 мОм.
Показания при токе 1 и 5 Ампер немного отличаются, скорее всего из-за прогрева шунта амперметра, также в процессе были небольшие колебания последнего знака вольтметра, около +/- 2 знака, но в любом случае показания совпадают с заявленными значениями.

1. Обозреваемый прибор также подключался к резисторам в четырехпроводном варианте.
2, 3, 4. Результаты просто отличные, сначала прибор показывает меньшее значение, но после пары секунд стабилизируется на показанном. Значение держится очень стабильно, лишь иногда может перескочить последний разряд на одну единицу.

А вот дальше я решил сравнить со своим RLC измерителем, но получил несколько странные результаты.
1. Установка нуля путем соединения через кусок медного провода.
2, 3. Резисторы 1 и 2.2 мОм все отлично
4. Резистор 10 мОм показывал 9.1-9.2 вместо 10
5, 6. Просто ради любопытства ткнул обычные 5% резисторы сопротивление 0.1 и 0.22 Ома, результат в принципе более-менее адекватный, что говорит о сложностях с линейностью именно в младшем диапазоне.

Взял те же резисторы 0.1 и 0.22 Ома и проверил их обозреваемым прибором, он показал сопротивление немного выше чем RLC измеритель.

Дальше я решил поэкспериментировать со своим предыдущим прибором. Для начала попробовал установить ноль прямым соединением щупов. Теперь все наоборот, 1 и 2.2 мОм показали завышенные результаты, а у остальных практически совпали с обозреваемым прибором.
У моего RLC метра декларируется 0.5% в базовом варианте и 0.3% при дополнительной калибровке. при 0.5% и 1.5 Ома диапазоне погрешность будет составлять +- 0.75 мОм. Можно конечно сказать что результаты примерно совпадают в обоих случаях, но на самой границе диапазона, но как-то все равно "не то". Получается что для работы с малыми сопротивлениями надо применять один способ установки нуля, а с сопротивлениями 5 мОм и выше — другой. 🙁

Измерения выше проводились при частоте 1 кГц, как и у обозреваемого прибора, но после того как я перевел RLC на частоту 100 Гц, то картина стала заметно лучше. В общем думаю надо еще разбираться, так как RLC измеритель имеет дополнительные настройки и возможно есть шанс настроить линейность.

После этого решено проверить еще несколько резисторов:
1. 0.47 Ома 1%
2. 5.1 Ома 1%
3. 9.76 Ома 2%
4. 75 Ом 1%

Резисторы 9.76 и 75 Ом я дополнительно не проверял, а вот 0.1, 0.22 Ома, которые были показаны ранее, а также 0.47 и 5.1 Ома проверил предварительно по той же методике, что использовал при проверке шунтов.
В итоге было получено:
Резистор 0.1 Ома — 0.09817 Ома реально
0.22 Ома — 0.21721 Ома
0.47 Ома — 0.47054 Ома
5.1 Ома — 5.105 Ома.

И соответственно результаты полученные при помощи обозреваемого прибора, как по мне, то довольно неплохо.

Так как прибор предназначен для работы с аккумуляторами, то он помимо внутреннего сопротивления умеет измерять и напряжение. Максимальное входное напряжение до 28 Вольт и его лучше не превышать, а вот полярность может быть любой, просто напряжение отобразится со знаком минус.

В процессе теста я сравнил показания вольтметра с более точным прибором, результаты отличные, но почти во всех тестах прибор завышал результат на 1 знак, что вполне нормально для цифровых приборов.

Был проведен и дополнительный тест, для этого я взял конденсатор и три шунта показанные в самом начале обзора.
Сначала я измерил внутреннее сопротивление конденсатора, а затем подключал последовательно с конденсатором шунты и смотрел насколько полученный результат отличается от расчетного.

1. ESR конденсатора 30.1 мОм
2. Конденсатор + резистор 1 мОм, измеренное 31.4, расчетное 31.1
3. Конденсатор + резистор 2.2 мОм, измеренное 33.2, расчетное 32.1
4. Конденсатор + резистор 10 мОм, измеренное 40.7, расчетное 40.1

Результаты очень неплохие, подкачал тест с резистором 2.2 мОм, но я думаю что такая погрешность допустима.

И конечно аккумуляторы. Сначала я взял аккумулятор которому два года и по даташиту у него сопротивление 12 мОм.
2. В полностью заряженном состоянии — 12.46 мОм.
3. В разряженном — 12.68 мОм
4. А вот пример увеличение внутреннего сопротивления при низкой температуре. Разряженный аккумулятор был охлажден примерно до -20 градусов. В результате увеличение сопротивление составило почти 1.6 раза.

Для примера тест аккумуляторов относящихся к категории "подарить врагу".

1, 2. Желтый, заряжен и разряжен.
3, 4. Синий, заряжен и разряжен.

Как можно понять, это совсем мрак. Если установить такой аккумулятор в повербанк, то из-за высокого внутреннего сопротивления он отключится раньше даже не выработав полностью ту небольшую емкость которая есть у аккумулятора.
На фото напряжение на аккумуляторах как раз после разряда в повербанке.

А вот измерение сопротивление литий-железного аккумулятора. Конечно здесь сопротивление великовато, отчасти это обусловлено тем, что аккумулятор мелкий. Чем меньше размер аккумулятора, тем меньше площадь электродов, тем выше сопротивление. Впрочем даже в пределах одного формфактора сопротивление может отличаться, существуют "высокотоковые" аккумуляторы с низким сопротивлением и "высокоемкие" с более высоким сопротивлением, но и большей емкостью.

1. Сопротивление при комнатной температуре 114.4 мОм
2. Сопротивление при температуре -20 градусов — 140.9 мОм, или в 1.23 раза выше чем при +25.

У показанного выше US18650VTC4 разница составляла почти 1.6 раза, но могу сказать что если нагрузить аккумулятор, то за счет самопрогрева он быстро вернет сопротивление в нормальное состояние.

Уже скорее в качестве дополнения осциллограммы на щупах прибора.
1. Только выход источника тока.
2. Пары щупов соединены. Так как данный режим является основным при использовании прибора, то дальнейшие осциллограммы снимались с соединенными парами щупов.

Осциллограммы в разных режимах работы.
Авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом.

И под конец небольшой бонус. Когда брал резисторы для проверки, то наткнулся на ленту с резисторами 0.1 Ома, по крайней мере именно так расшифровывается их маркировка — коричневый, черный, серебряный, золотой = 0.1 Ом, 5%

Но самое интересное выяснилось в процессе, Из 6 штук только 1 (один) имел сопротивление около 0.1 Ома, а у пяти было 0.224 Ома! Я даже проверял их в одной ленте, это отчетливо видно на фото.
Резисторы покупались в оффлайне, у проверенного продавца. правда как-то давно я уже встречал ошибочную маркировку, но там все резисторы в ленте были промаркированы некорректно, но чтобы так как здесь….

Видеоверсия обзора

В качестве резюме могу сказать, что прибор однозначно понравился, как минимум высокой точностью и удобством пользования. Его можно применять как для измерения внутреннего сопротивления аккумуляторов, так и для проверки ESR конденсаторов и что также весьма важно — для измерения очень малых величин сопротивления.
Единственный пожалуй минус, это то, что меню полностью на китайском языке. Особенно это будет неудобно, если будет нужна функция сортировки, увы 🙁 При обычной работе в меню лазить не приходится, все работает "как есть" и вполне нормально.

Как-то немного расстроили сложности при работе с моим RLC измерителем, надо еще разбираться почему такое происходит. Как было выяснено, по большому счет он "со скрипом" пролазит в указанные 0.5%, но при двух разных вариантах получается смещение в одну или другую сторону, при этом при 100Гц показания корректны.

Спонсором данного обзора выступил посредник yoybuy.com, который взял на себя оплату доставки.
Стоимость прибора + комплекта резисторов вместе с доставкой к посреднику выходит около 30 долларов, стоимость доставки от посредника зависит от разных факторов. На всякий случай информация о весе, прибор со щупами — 153 грамма, резисторы — 15 грамм, информация со страницы заказа у посредника.

На этом у меня все, надеюсь что обзор был полезен, а также буду рад вопросам и предложениям тестов.

Омметр — Википедия

Материал из Википедии — свободной энциклопедии

Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

Классификация[править | править код]

  • По исполнению омметры подразделяются на щитовые, лабораторные и переносные
  • По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые

Магнитоэлектрические омметры[править | править код]

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе равна: I = U/(r0 + rx), где U — напряжение источника питания; r0 — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).

Согласно этой формуле, магнитоэлектрический омметр имеют нелинейную шкалу. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля (скорректировать величину r0) специальным регулятором на передней панели при замкнутых входных клеммах прибора, для компенсации нестабильности напряжения источника питания.

Поскольку типичное значение тока полного отклонения магнитоэлектрических микроамперметров составляет 50..200 мкА, для измерения сопротивлений до нескольких мегаом достаточно напряжения питания, которое даёт встроенная батарейка. Более высокие пределы измерения (десятки — сотни мегаом) требуют использования внешнего источника постоянного напряжения порядка десятков — сотен вольт.

Для получения предела измерения в единицы килоом и сотни ом, необходимо уменьшить величину r0 и соответственно увеличить ток полного отклонения измерителя путём добавления шунта.

При малых значениях rx (до нескольких ом) применяется другая схема: измеритель и rx включают параллельноПерейти к разделу «#Измерения малых сопротивлений. Четырёхпроводное подключение». При этом измеряется падение напряжения на измеряемом сопротивлении, которое, согласно закону Ома, прямо пропорционально сопротивлению, (при условии I=const).

  • ПРИМЕРЫ: М419, М372, М41070/1

Логометрические мегаомметры[править | править код]

Перейти к разделу «#Измерения малых сопротивлений. Четырёхпроводное подключение» Мегаомметр М1101М


Основой логометрических мегаомметров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

  • ПРИМЕРЫ: ЭС0202, М4100

Аналоговые электронные омметры[править | править код]

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

  • ПРИМЕРЫ: Е6-13А, Ф4104-М1

Цифровые электронные омметры[править | править код]

Цифровой омметр Щ34 Перейти к разделу «#Измерения малых сопротивлений. Четырёхпроводное подключение» Микроомметр MOM600A

Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

  • ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34

Измерения малых сопротивлений. Четырёхпроводное подключение[править | править код]

При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.

Видовые наименования[править | править код]

  • Микроомметр — омметр с возможностью измерения очень малых сопротивлений (менее 1мОм)
  • Миллиомметр — омметр для измерения малых сопротивлений (единицы — сотни миллиом)
  • Мегаомметр (устар. мегомметр) — омметр для измерения больших сопротивлений (единицы — сотни мегаом)
  • Тераомметр — омметр для измерения очень больших сопротивлений (единицы — сотни тераом)
  • Измеритель сопротивления заземления — специальный омметр для измерения переходных сопротивлений в устройствах заземления

Обозначения[править | править код]

Омметры обозначаются либо в зависимости от системы (основного принципа действия), либо по ГОСТ 15094

  • Мхх — приборы магнитоэлектрической системы
  • Фхх, Щхх — приборы электронной системы
  • Е6-хх — измерители сопротивлений, маркировка по ГОСТ 15094

Основные нормируемые характеристики[править | править код]

Другие средства измерения сопротивлений[править | править код]

Измерение сопротивления по постоянному току[править | править код]

  • Измерительный мост — обеспечивает весьма высокую точность, но неудобен из-за необходимости ручного уравновешивания
  • Магазин сопротивлений, катушки электрического сопротивления — измерение производится методом сравнения, с помощью замещения измеряемого объекта
  • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления

Измерение сопротивления по переменному току[править | править код]

  • Измеритель иммитанса — измерения сопротивления на частотах от десятков герц до нескольких мегагерц
  • Высокочастотный (векторный) измеритель импеданса — измерения сопротивления на частотах сотни килогерц — сотни мегагерц
  • Измеритель добротности — измерения сопротивления косвенным методом на частотах от 1 кГц до нескольких сотен мегагерц
  • Измеритель полных сопротивлений — измерения сопротивления нагрузки линии на частотах в десятки — сотни мегагерц
  • Измерительная линия — измерения сопротивления нагрузки линии на частотах в сотни — тысячи мегагерц

Литература[править | править код]

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979
  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л., 1973

Нормативно-техническая документация[править | править код]

  • ГОСТ 22261—94 «Средства измерений электрических и магнитных величин. Общие технические условия»
  • ГОСТ 23706-93
  • ГОСТ 8.366—79 «Государственная система обеспечения единства измерений. Омметры цифровые. Методы и средства поверки»
  • ГОСТ 8.409—81 «Государственная система обеспечения единства измерений. Омметры. Методы и средства поверки»

Значок сопротивления на тестере. Как проводить измерения электронным тестером (мультиметром). Как измерить сопротивление резистора мультиметром

У каждого человека хотя бы раз в жизни возникала необходимости провести те или иные измерения электрических величин. Будь то напряжение в розетке или просто проверить зарядку аккумулятора в автомобиле все мы прибегаем к помощи измерительных приборов. Во времена СССР с измерительными приборами было очень туго, достать их было очень трудно, и не все понимали, как ими пользоваться.

На сегодняшний день проблем с приобретением того или иного инструментами нет можно купить что душе угодно хоть лабораторию для измерений, как говорится – «любой каприз за ваши деньги».

Но речь в сегодняшней статье пойдет не о лаборатория для измерений (это уже на профессиональном уровне), а об обычных мультиметрах которыми так часто пользуются электрики включая меня.

Приветствую всех друзья на сайте «Электрик в доме ». Ранее я уже публиковал статьи о том как пользоваться мультиметром при проведении измерений, но ввиду того что мне приходит очень много вопросов и комментариев с просьбой рассказать как можно проверить исправность лампочки или замерить сопротивление резистора , решил опубликовать подробный материал как измерить сопротивление мультиметром.

Метод измерения электрического сопротивления – как работает прибор

Принцип, по которому выполняется измерение электрического сопротивления мультиметром , основан на самом главном законе электротехники — законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).

Именно по этой связи работает прибор. Зная две из величин, можно легко вычислит третью. В качестве источника напряжения используется встроенный источник (DC) питания прибора, которым является штатная батарейка напряжением 9 В.

По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.

Настройки прибора перед измерениями

Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это . В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.

На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.

Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.

Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.

Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».

Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common — общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».

Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.

При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.

Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.

Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой» . Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.

Как измерить сопротивление резистора мультиметром

С теорией ознакомились и на первый взгляд вроде бы все понятно, однако как показывает практика, именно при практических работах у людей часто возникают вопросы. Поэтому давайте попробуем провес

Измерение электрического сопротивления

Подразделяют сопротивления электрические условно на малые (не более 1 Ома), средние (от 1 до 105 Ом), и ,соответственно большие (свыше 105 Ом). Измерения их также могут происходить различными способами. При измерении малых – применяется метод вольтметра-амперметра, а также мостовой. Для средних применимы методы вольтметра-амперметра, мостовой (мосты одинарные), компенсационные и методы непосредственной оценки (омметры). Чтоб измерять большие сопротивления применяют мегомметры, которые реализуют метод непосредственной оценки.


Содержание:

Метод амперметра-вольтметра

Пожалуй, он самый простой для измерения средних и малых сопротивлений R.

При измерении малых R рекомендуют применять такую схему:

Измерение мощности косвенным методом в цепи постоянного тока при малом сопротивлении нагрузки

Потому что в данном случае IA≈IR  из-за большого внутреннего сопротивления вольтметра относительно R и будет выполнено равенство IV«IR. При среднем значении R рекомендована такая схема:

Измерение мощности косвенным методом в цепи постоянного тока при большом сопротивлении нагрузки

Так как в этом случае UV≈UR из-за очень малого внутреннего сопротивления амперметра. Соответственно применив закон Ома получим:

Сопротивлениепостоянному току

Из-за наличия внутренних сопротивлений в приборах возникает погрешность, что есть основным недостатком этого метода. Но при измерении малых R сопротивление вольтметра будет равно RV>100R, а для измерения средних R амперметра RA<100R, то в таком случае суммарная погрешность не будет более 1%.

Метод непосредственной оценки

Чтоб реализовать такой метод необходимо применить омметр, схема которого ниже:

Схема омметра

Данное устройство состоит из измерительного механизма ИМ (тип механизма магнитоэлектрический), шкала которого градуируется в омах. Также существует источник питания постоянным током U и резистор добавочный Rд. К выходным зажимам А и В производят подключения измеряемого сопротивления RX. Соответственно в цепи будет протекать ток:

Ток протекающий в омметре

Где RД, RИ, RХ – добавочный резистор и сопротивления измерительного механизма и соответственно объекта, который подлежит измерению. При этом угол отклонения стрелки прибора будет равен:

Угол отклонения омметра

Где S1 – чувствительность токового измерителя.

Если зажимы А и В разомкнуть (1) , то угол отклонения стрелки прибора будет равен нулю α=0, а если их закоротить (R=0), то угол отклонения будет максимален. Поэтому у омметра шкала обратная – ноль у него справа.

Омметры довольно таки удобны в практическом применении, но они имеют довольно высокую погрешность (класс точности 2,5). Это связано с нестабильностью источника питания и неравномерностью шкалы. Дабы устранить причину неравномерности шкалы в омметрах стали использовать логометрические измерительные механизмы:

Схема аналогового мегомметра

Такие приборы получили название мегомметров. Для получения источника питания в мегомметрах используют небольшие генераторы напряжением до 2500 Вольт и приводящиеся в движение вручную. В электронных же мегомметрах в качестве источника могут быть использованы батарейки или же внешний источник питания, подключаемый через специальный блок питания устройства. Мегомметры применяют для измерений больших сопротивлений, таких как сопротивление изоляции проводников. Для измерений свыше 109 Ома применяют специальные электронные устройства, которые носят название тераомметров.

Мостовой метод

Устройства, применяемые для реализации такого измерения, именуют измерительными мостами. Четырехплечевой или одинарный мост содержит в себе две диагонали и четыре плеча:

Одинарный или четырехплечевой мост

Мост образуют три резистора, значения которых известны – R2, R3, R4 и соответственно сопротивление, значение которого необходимо измерить Rx. В одну из диагоналей моста необходимо подключить источник питания, для данного случая источник Е0 подключенный к зажимам a и b, а другую нулевой индикатор НИ (зажимы c и d), который выполняет роль указателя симметричности моста. Когда потенциалы в точках c и d будут равны, то отклонение в НИ протекает ток IНИ = 0 и его отклонение тоже  равно нулю. Мост в состоянии равновесия. Будут выполнятся следующие соотношения: I1 = I2, I3 = I4, RxI1=R3I3, R2I2=R4I4. Учтя равенство токов и почленно разделив два последних уравнения получим:

2

Из данного выражения можем выделить искомое сопротивление:

Сопротивление измеряемое мостовым методом

Плечо R2 именуют плечом сравнения, а плечами отношений R3 и R4 соответственно.

Методом одинарного моста измеряют только средние сопротивления. Измерять им малые и большие сопротивления не рекомендуют. Нижний предел измерений моста (единицы Ом) ограничивается влиянием сопротивлений проводов и контактов, которые подключаются в плечо ас последовательно с объектом измерения Rх. Верхний предел (105 Ом) ограничен шунтирующим действием токов утечки.

Компенсационный метод

Его применяют для получения повышенной точности измерения. Ниже показана схема подобной установки:

Компенсационный метод измерения сопротивлений

В данную схему входит компенсатор постоянного тока, двухпозиционный переключатель (П2 и П1), резистор образцовый R0, а также источник питания Е и измеряемый резистор Rх. Измеряв падение напряжения на каждом из резисторов при двух разных положениях переключателя определяют – UR0=R0I и URХ=RХI. Из этих выражений можно получить следующую формулу:

Измерение сопротивления компенсационным методом

При выполнении измерений необходимо ток I поддерживать постоянным и не допускать изменения его значения, для обеспечения точности измерения.