Изготовление пенобетона: компоненты, способы и этапы работы

Содержание

компоненты, способы и этапы работы

Содержание

  • 1 Как самому изготовить пенобетон?
  • 2 Что нужно иметь для изготовления качественного пенобетона?
  • 3 Самостоятельный способ изготовления
  • 4 Себестоимость самостоятельного изготовления
  • 5 Этапы работы
    • 5.1 Раствор пенообразователя
    • 5.2 Разливание раствора по формам
    • 5.3 Технология резки
  • 6 Рекомендации специалистов
  • 7 Домашняя фабрикация блоков
  • 8 Вывод

Начиная строительство, будущий владелец дома старается всеми возможными способами сократить расходы на стройматериалы. Низкая стоимость обычно исключает высокое качество используемых материалов, поэтому возникает проблема – качественно или дешево. Пеноблоки стали такими популярными в строительном деле благодаря своей легкости в использовании и своим характеристикам, которые делают этот материал наиболее подходящим для строительства. Высокая стоимость готовых пеноблоков привела к распространению практики самостоятельного изготовления стройматериала. Изготовление пеноблоков в домашних условиях позволяет не только существенно сократить расходы, но и получить не менее качественный материал для сооружения теплого помещения.

Как самому изготовить пенобетон?

Используя необходимое оборудование вполне можно организовать производство в домашних условиях. Производство пеноблоков требует точного выполнения технологии, соблюдения пропорций смешивания компонентов. Если вы решили сэкономить на готовых пеноблоках, изготовив их самостоятельно, следует знать, что технология изготовления домашнего пенобетона имеет некоторые особенности:

  • Используйте чистый цемент, марка – от 400 и выше.
  • Пену добавляют в последнюю очередь, когда остальные компоненты смешаны до однородной консистенции.
  • Качество готовой пены можно проверить нехитрым способом – наберите ее в ведро и переверните емкость – пена не должна вытекать.
  • Полузастывший бетон извлекают из форм и разрезают на отдельные блоки. В формах бетонная смесь должна находиться не менее суток, а после разрезания блоки оставляют досыхать на поддоне на 15 часов при температуре от 5 градусов.

Вернуться к оглавлению

Что нужно иметь для изготовления качественного пенобетона?

Чтобы сделать пенобетон своими руками, понадобится немало времени, денежных вложений. Для организации собственного производства вам потребуются специальные материалы и оборудование:

  • бетоносмеситель;
  • чистый сухой песок;
  • качественный цемент;
  • чистая вода;
  • пенообразователь;
  • пеногенератор;
  • формы.

Рецептура имеет множество вариаций, качество прямопропорционально зависит от исходных компонентов.

Вернуться к оглавлению

Самостоятельный способ изготовления

Схема производства пенобетона.

Изготовление пеноблоков начинается из расчета объема емкости, в которую потом будет выливаться готовый раствор. Исходя из полученных параметров, рассчитывают количество требуемых компонентов – на каждые 0,5 кубометра требуется 100 л воды и по 200 кг цемента и просеянного песка.

Сначала в бетономешалке смешивают песок, цемент, с помощью специального генератора и химического пенообразователя изготавливают устойчивую пену с расчетом по 500 л пены на 1 кубометр. К цементу и песку добавляют чистую воду, а затем смешивают с готовой пеной. Большинство пеногенераторов снабжены специальным насосом, что позволяет закачивать пену непосредственно в барабан бетономешалки.

Когда все компоненты будут помещены в бетоносмеситель, их необходимо тщательно смешать. Плотность материала регулируется добавлением в него дополнительного количества пены. Готовый раствор выливают в подготовленную форму, дают высохнуть. Сухие блоки извлекают из форм, оставляют на сутки для полного высыхания. Процесс производства необходимо проводит при температуре не ниже 5 градусов.

Пенообразователь можно купить в специализированных магазинах, или сделать в домашних условиях. Для этого вам понадобится 150 г едкого натра, 1 кг канифоли, 60 г столярного клея. Компоненты соединяют, немного нагревают и помешивают до состояния однородной массы. Перед процессом изготовления пены готовый раствор смешивают с водой.

Формы для будущих блоков можно сделать из фанерных или металлических листов. Изготовление требует внимательности и строгого соблюдения пропорций – они должны быть геометрически правильными. Во избежание вытекания готового растворы, их обтягивают полиэтиленом. После извлечения блоков можно сразу же наливать следующую порцию раствора.

Вернуться к оглавлению

Себестоимость самостоятельного изготовления

Лучше выбирать цемент М-400 или М-500.

Стоимость изготовленных дома пеноблоков намного ниже, чем цена готового продукта. Для приготовления 1 кубометра материала D600 вам понадобится:

  • 200-250 кг песка и цемента;
  • 1,5 л пенообразователя;
  • вода.

К стоимости компонентов добавьте расходы на электричество, которое потребляет оборудование.

Основные расходы идут на цемент, остальные компоненты составляют четверть стоимости цемента. На масштабы финансовых вложений влияют также затраты на специальное оборудование, по желанию его можно соорудить самостоятельно. Сборка, установка – всю информацию вы сможете найти в свободном доступе. С другой стороны, если у вас мало опыта в производстве пенобетона – придется экспериментировать для получения материала, соответствующего требованиям и характеристикам. Возможно, свои качественные пеноблоки получатся не с первой попытки, придется снова тратить деньги на новую порцию компонентов.

Вернуться к оглавлению

Этапы работы

Процесс состоит из трех главных этапов – приготовление раствора, разливка по формам, разрезание. Для изготовления качественных пеноблоков необходимо разобраться в особенностях технологии каждого из них.

Вернуться к оглавлению

Раствор пенообразователя

Прежде всего, подготавливается цементная смесь как для обыкновенного бетона. Преимущественно выбирают цемент марки М400 или М500. Проследите, чтобы песок был сухим, без посторонних примесей, ракушек или камешков. Что касается воды – подойдет обычная водопроводная.

В готовую бетонную смесь добавляют готовую пену. Как говорилось ранее, пенообразователь можно купить в магазине, или сделать самостоятельно по рецепту, описанному выше. Пену и бетонную смесь хорошо вымешивают, готовый раствор можно разливать по формам.

Вернуться к оглавлению

Разливание раствора по формам

Разливание раствора по формам.

Перед тем, как поместить раствор в подготовленные формы их необходимо смазать специальным средством, не содержащим масла. Есть две методики изготовления пеноблоков – литьевая, резательная. Первый способ предполагает заливание бетонного раствора в отдельные формы. После застывания достаточно извлечь готовый блок и оставить на поддоне еще не несколько часов. Недостатки данной технологии:

  • возможная деформация металла;
  • повреждение блоков в процессе извлечения.

Установка неровных блоков трудоемкая, такая конструкция будет значительно уступать по качеству. Достоинством такого способа является то, что в отличие от метода резки можно сэкономить не покупая оборудование для разрезания.

Вернуться к оглавлению

Технология резки

Процесс подразумевает разрезание цельной бетонной плиты на отдельные блоки. Преимущества данного метода:

  • блоки геометрически правильные;
  • ровные края;
  • отсутствие сколов и неровностей.

Среди недостатков стоит указать:

  • дорогостоящее оборудование;
  • выбор момента для реки – при полном высыхании может смещаться струна для резки, недостаточно застывший бетон разрушается в процессе разрезания.

Вернуться к оглавлению

Рекомендации специалистов

Формы изготовляют из ламинированной фанеры или металлических листов.

Советы профессионалов помогут избежать непредвиденных проблем в процессе производства пеноблоков в домашних условиях. Для изготовления качественного стройматериала придерживайте следующих рекомендаций:

  • Формы изготовляют из фанеры или металлических листов.
  • Перед заливкой раствора обработайте внутреннюю поверхность форм специальным раствором, сами формы обтяните полиэтиленом.
  • Сушку проводят при оптимальной температуре в 50-60 градусов на протяжении 2 суток.
  • Материал извлекают после его полного высыхания.
  • Готовые блоки оставляют на поддонах еще на несколько часов, только после этого возможна их установка.

Вернуться к оглавлению

Домашняя фабрикация блоков

При наличии необходимых умений и правильном подходе к процессу изготовления, пеноблоки изготовляются быстро. Большинство профессиональных строителей предпочитают изготавливать пеноблоки, экономя денежные средства, получая моральное удовлетворение от процесса.

Вернуться к оглавлению

Вывод

Домашнее производство своего пенобетона помогает значительно сократить расходы на стройматериалы. Технология изготовления проста, главным условием является четкое соответствие инструкциям. Стоимость таких блоков зависит от выбора компонентов, их цены.

Пенобетон своими руками: состав, технология

При возведении нового здания застройщик отслеживает одну цель — достичь максимальной экономии денег и при этом предоставить заказчику качественный и долговечный проект. Для снижения расходов на материалы в строительной сфере стали практиковать изготовление пеноблоков. При невысокой стоимости такой материал обладает массой эксплуатационных достоинств.

Содержание

  • 1 Как самому изготовить пенобетон
  • 2 Что нужно иметь для изготовления
  • 3 Самостоятельный способ изготовления
  • 4 Себестоимость
  • 5 Этапы работы
    • 5. 1 Раствор пенообразователя
    • 5.2 Разливание раствора по формам
    • 5.3 Технология резки
  • 6 Рекомендации специалистов
  • 7 Домашняя фабрикация блоков
  • 8 Вывод

Как самому изготовить пенобетон

Чтобы создать качественный материал, необходимо подготовить специальное оборудование и изучить технологию изготовления. Она предусматривает следующие нюансы:

  1. В качестве исходного сырья для изготовления пеноблоков в домашних условиях может использоваться только чистый цемент под маркой не ниже 400.
  2. Пена добавляется только после тщательного перемешивания основных компонентов.
  3. Для проверки качества конечного продукта необходимо набрать в ведро небольшое количество смеси и перевернуть его: качественная пена не будет вытекать.
  4. В полузастывшем состоянии бетон достается из форм и разделяется на небольшие блоки. Оптимальный период, по истечении которого извлекается материал, составляет 24 часа. После разрезания блоки подсушиваются на поддоне в течение 15 часов при температуре выше 5°C.

Для изготовления пенобетона своими руками можно использовать такие технологии и способы:

  1. Автоклавный.
  2. Простой.
  3. Неавтоклавный.
  4. С применением бетономешалки и пеногенератора.

В большинстве случаев домашние мастера создают материал без применения печи. И хоть сама технология производства может показаться достаточно простой и доступной, при несоблюдении некоторых правил конечный продукт окажется низкокачественным и не будет соответствовать заявленным эксплуатационным требованиям.

Начиная изготовление, следует грамотно рассчитать пропорции компонентов, выбрать оптимальный временной интервал для замеса, просушивания и выдержки в формах. При соблюдении таких правил пенобетон получится надежным и долговечным.

Что нужно иметь для изготовления

Следует подготовить ряд материалов и оборудования, начиная изготовление; пенобетон можно сделать своими руками, используя:

  1. Бетономешалку. Ее объем определяется потребностями клиента. Для реализации проектов частного строительства хватает агрегата на 300 л.
  2. Среднефракционный речной песок, в составе которого отсутствуют любые примеси.
  3. Цементную смесь марки М400-М500. Заменять ее любыми другими компонентами запрещено.
  4. Парогенератор для пенобетона. Производство можно начинать и без этого оборудования, но его наличие гарантирует повышенную прочность и надежность конечной продукции.
  5. Воду.
  6. Емкости для заливки готовой смеси. В строительных магазинах предлагаются готовые формы для пеноблоков и газоблоков.
  7. Пенообразователь.

Существуют и другие компоненты, применяемые в особых случаях. В их числе красящая добавка, которая позволяет создавать цветной материал для помещений без отделки. Еще в состав могут вносить отвердитель, повышающий устойчивость пенобетона к отрицательным температурам, воздействию влаги и прочим негативным факторам.

Самостоятельный способ изготовления

Создавая пенобетон своими руками в домашних условиях, следует рассчитать объем емкости, куда будет помещаться готовая смесь. Руководствуясь полученным результатом, следует определить количество всех компонентов — на каждые 0,5 м³ задействуется 100 л воды и 200 кг цементной смеси с просеянным песком.

Первым делом в бетономешалку помещают песок и цемент. Затем с применением специального устройства и пенообразователя создается пена с расчетом по 500 л пены на 1 м³. Цементная смесь разбавляется водой и смешивается с пеной.

Многие системы для образования пены оборудованы насосным элементом, который позволяет быстро и эффективно закачивать консистенцию в барабан.

После помещения компонентов в емкость их нужно тщательно перемешать. Для изменения плотности в состав вносится разное количество пены.

Раствор выливается в форму и просушивается. Потом сухие блоки достаются наружу и оставляются на 24 часа для просушки.

Образователь пены продается в строительных магазинах или создается своими руками. Для этой цели задействуется 150 г едкого натра, 1 кг канифоли и 60 г столярного клея. Все вещества соединяются, прогреваются, а потом размешиваются до однородного состояния. Перед производством в раствор добавляют воду.

Форму под блок можно изготовить своими руками, используя подручный материал. Такой этап требует повышенной точности и следования технологии. В противном случае геометрия блоков будет неточной. Чтобы предотвратить вытекание раствора, его следует обтянуть полиэтиленовой пленкой. Когда одна порция будет изъята, можно заливать следующую.

Себестоимость

Готовые магазинные блоки стоят намного дороже, чем самодельные изделия. Чтобы приготовить кубометр качественного материала, соответствующего марке D600, следует знать, из чего делают пено- и газобетон: Стандартный рецепт выглядит следующим образом:

  1. 200-250 кг песчано-цементной смеси.
  2. 1,5 л образователя пены.
  3. Вода. Можно использовать из централизованного водопровода. Главное — правильно рассчитать пропорции пенобетона и воды.

Еще следует учесть расходы на электрическую энергию, которая будет потребляться оборудованием. Они могут меняться в зависимости от региона, где находится мини-производство.

Так, в Москве электроэнергия стоит дороже, чем в Подмосковье или отдаленных регионах. Основная часть затрат идет на покупку цемента. При этом объемы финансовых вложений определяются и типом используемого оборудования.

Этапы работы

Интересуясь, как сделать пенобетон в домашних условиях, необходимо тщательно изучить технологию изготовления пеноблоков и найти оптимальный рецепт. После этого можно поэтапно выполнять требуемые действия, в точности соблюдая инструкцию.

Раствор пенообразователя

Технология пенобетона предусматривает подготовку цементного раствора. Его создают точно так же, как для традиционного бетона. В качестве цементной смеси рекомендуется использовать продукцию под марками М400 или М500.

Важно убедиться, что песок сухой и не имеет в своем составе ненужных примесей или добавок. Для разбавления компонентов используется простая вода из централизованной системы водоснабжения.

В готовый раствор добавляется пена. Пеногенератор продается в каждом строительном магазине или делается из подручных средств.

Разливание раствора по формам

Следующий этап заключается в разлитии подготовленной консистенции в заготовленные формы. Перед выполнением этого действия емкости смазываются особым раствором. Строители знают 2 методики, как сделать пеноблоки своими руками:

  1. Литьевая.
  2. Резательная.

Первая технология заключается в залитии раствора в заготовки. Когда он застынет, его можно достать из формы и выждать еще пару часов для окончательного затвердевания. Использование подобной методики имеет ряд недостатков. В первую очередь, это возможное повреждение металла, а еще деформация блоков при изъятии.

Устанавливать конструкции с неровной геометрией достаточно сложно, при этом они некачественные и недостаточно прочные. Однако метод резки более затратный, поскольку он требует покупки специального оборудования.

Технология резки

Производство пенобетонных блоков с применением технологии резки предусматривает разделение готовой плиты на несколько отдельных секций. В течение 6-9 часов исходное сырье приобретает оптимальную степень прочности и может сниматься с опалубки. Дальше подготовленный массив перемещается траверсой на резательное оборудование, и специалист приступает к процессу резки.

Плюсом подобной методики является высочайшая точность, поскольку допустимое отклонение не превышает 1 мм. Комплекс для резки оборудован специальным шнеком для снятия горбушки и витыми струнами, которые осуществляют резку материала. Для получения разных размеров блока специалист меняет положение режущих струн. 1 цикл длится в течение 5-7 минут.

После завершения мероприятия емкость с блоками помещается в место для просушивания. Уже через 12-24 часа, в зависимости от эффективности просушивания, пеноблок достается из поддона и перемещается на место хранения.

Методика обладает такими достоинствами:

  1. Геометрия блоков получается ровной и правильной.
  2. Края не имеют отклонений.
  3. Любые сколы и неровности исключены.

К минусам относят:

  1. Дополнительные затраты на покупку оборудования.
  2. Если бетон не застынет, он будет разрушен при выполнении резки.

Рекомендации специалистов

Специалисты рекомендуют придерживаться некоторых принципов и требований, которые позволят создать качественный материал без ошибок и отклонений:

  1. Для изготовления форм под будущие пеноблоки рекомендуется использовать фанеру с ламинированным покрытием или прочные листы металла.
  2. Перед помещением раствора в заготовку, ее следует обработать раствором, а саму конструкцию обтянуть полиэтиленовой пленкой.
  3. Просушивание осуществляется в температурном диапазоне +50…+60°C в течение 48 часов.
  4. Материал можно достать из формы только после его полного высыхания.
  5. Готовый блок держится на поддонах в течение нескольких часов. Только после этого его используют по назначению.
  6. Приступать к оштукатуриванию стен можно только через 3-4 месяца после кладки, поскольку блоки дают усадку.
  7. Перед началом работ по отделке следует очистить материал от грязи и пыли, а еще тщательно подготовить поверхность к нанесению слоя.

Домашняя фабрикация блоков

Если овладеть базовыми навыками производства, подготовить требуемое оборудование и материалы, в домашних условиях можно создать мини-фабрику по изготовлению пенобетона. Подобное решение позволит сэкономить деньги на покупке строительных материалов, а еще создать небольшой бизнес.

Вывод

Производство блоков из пенобетона в домашних условиях — отличный способ изготовить популярный строительный материал без переплат и неоправданных расходов. Чтобы конечный продукт соответствовал всем стандартам качества и экологичности, важно придерживаться установленного рецепта и в точности следовать инструкции.

Самостоятельное изготовление пенобетона

Оглавление:

  • Как изготовить пенобетон своими руками: нюансы
  • Для чего нужен бетоносмеситель?
  • Производство пенобетона: особенности
  • Дополнительные моменты

Когда появляется желание начать строительство собственного дома, будущий хозяин начинает думать об экономии. Он стремится найти более дешевые строительные материалы, без потери качества. Сегодня в современном строительстве применяются новейшие разработки и современные технологии. Одной из новых разработок стало изготовление пенобетона. Этот материал был специально создан для производства пеноблоков, которые нашли широкое применение в строительстве домов малой этажности.

Схема производства пенобетона.

У пеноблоков много положительных качеств:

  • отличные эксплуатационные данные,
  • отвечает требованиям экологии,
  • прекрасный звукоизолирующий материал,
  • поддается простой обработке, так как имеет пористую структуру,
  • пропускает воздух, поэтому в таких домах никогда не бывает высокой влажности,
  • хорошая прочность,
  • длительное время эксплуатации.

Стоимость такого строительного материала вполне демократична. Однако часто для экономии застройщики изготавливают пеноблоки самостоятельно.

Хочется сразу сказать, что одного желания изготовить пенобетон мало. Придется одновременно стать химиком, технологом и инженером по изготовлению пеноблоков.

Как изготовить пенобетон своими руками: нюансы

Чтобы изготовить монолитный пенобетон, не обращаясь за помощью к профессионалам, необходимо ознакомиться с технологией.

Таблица технических характеристик пенобетона.

Для такого материала должен использоваться только цемент М 400. Нельзя добавлять никаких примесей. В случае применения теплоизоляционного бетона, не разрешается добавлять песок. Когда плотность бетона превысит 600 кг/м³, начинают добавлять природный песок.

В цементную смесь с песком добавляется пенообразователь. Самым подходящим считается синтетический «Ареком-4». Чтобы изготовить такой пенопреобразователь самостоятельно, необходимо иметь:

  • едкий натр,
  • канифоль,
  • столярный клей.

Смесь измельчают, слегка нагревают, потом мешают до получения однородной массы. Данный пенообразователь требует наличия пеногенератора. После добавления воды в концентрат получается рабочий раствор.

Необходимо с особым вниманием отнестись к оборудованию, необходимому для получения пенобетона. Из всех видов агрегатов чаще всего используется:

  • пеногенератор,
  • бетоносмеситель,
  • компрессор,
  • манометр,
  • формы.

У первых 4-х аппаратов абсолютно одинаковые характеристики. Они отличаются только мощностью и другими свойствами, которые не оказывают серьезного влияния на производство пенобетона. Надо заметить, что полученный материал может использоваться как в строительстве жилого дома, так и гаража.

Для получения пены необходимо использовать пеногенератор. Конструкция полуавтоматического пеногенератора включает следующие элементы:

Схема устройства пеногенератора.

  1. Модуль, чтобы производить доставку смеси для последующего пенообразования.
  2. Непосредственный модуль пенообразования.
  3. Модуль, проводящий автоматическую дозацию.

Глядя на эти 3 составляющие, можно легко понять, по какому принципу выполняет работу этот агрегат. На 1-ом этапе бетон отправляется в пеногенератор. Причем раствор должен полностью отвечать всем технологическим требованиям.

Затем бетон принимает 2-ой модуль, в котором происходит его смешивание с воздухом. В результате получается готовый пенобетон. В большинстве случаев подобные пеногенераторы имеют высокую производительность. Они способны за 60 с изготовить более 500 л материала.

Вернуться к оглавлению

Для чего нужен бетоносмеситель?

Этот аппарат смешивает ингредиенты, чтобы на выходе получился бетон, который можно использовать в строительстве. Когда строится гараж или какая-нибудь другая конструкция, чтобы получить пенобетон, обязательно применяется пеногенератор. Для самостоятельной работы можно обойтись и без бетоносмесителя. Эту машину может заменить большая емкость и обыкновенная лопата, но мешать раствор придется самому.

Для изготовления пенобетона понадобится форма.

Это, пожалуй, простейшая деталь во всей технологии. Ее можно изготовить из любого подручного материала. От материала требуется только гладкая поверхность и отсутствие деформации от массы бетона. Для форм самым лучшим материалом будут металлические пластины.

Наиболее важным размером является ширина, так как толщина стены находится от нее в прямой зависимости. Для стен гаража хватит и 20 см, а вот для строительства дома ширина формы должна быть более 30 см.

Надо сказать, что все описанные выше приборы можно сделать в домашних условиях самостоятельно, нужно только внимательно разобрать каждый чертеж. Более простым вариантом будет покупка таких агрегатов.

Вернуться к оглавлению

Производство пенобетона: особенности

Классификация пенобетона.

Сначала смешиваются все ингредиенты:

  • песок,
  • вода,
  • цемент.

После получения однородной массы выполняется добавление пены. Плотность полученного пенобетона должна превышать 80 г/м³. Если этот показатель будет меньше, количество пор в пеноблоке сильно увеличится, из-за чего он будет быстро разрушаться. Определить, насколько хорошо получился пенобетон, можно простым способом. В обычное ведро наливается пена, а затем оно переворачивается кверху дном. Если плотность имеет высокий показатель, то пена вытекать не должна.

Необходимо помнить, что время, затраченное на перемешивание раствора, влияет на механические свойства пенобетона. Чем его меньше, тем качественнее он получается.

Чтоб изготовить пеноблоки, необходимо пенобетон залить в форму. Выждав некоторое время, не полностью застывший материал режется на блоки, которые необходимо продержать в форме больше 24 часов. Готовый пеноблок, извлеченный из формы, необходимо продержать на поддоне дополнительно 15 часов, причем температура окружающей среды должна быть выше 5°С.

Чтобы увеличить скорость затвердевания материала, строители применяют самые разные типы ускорители. Самым простым и доступным считается хлористый кальций. Его добавляют в смесь в количестве 2% от общего объема цемента.

  • марка цемента,
  • качество и размеры песка,
  • способ выдерживания,
  • содержание цемента в растворе,
  • плотность пеноблока.

Вернуться к оглавлению

Дополнительные моменты

Основные эксплуатационные свойства пеноблока приблизительно соответствуют параметрам натуральной древесины. Однако такие блоки можно эксплуатировать намного дольше. Они отличные теплоизоляторы. С наступлением холодов пеноблочные стены отлично сохраняют тепло, в летнюю жару в таком доме всегда прохладно.

Самыми важными преимуществами является скорость и возможность его изготовления прямо на стройплощадке. В результате экономятся значительные бюджетные средства.

Недавно был изобретен поризатор. Этот новейший механизм совместил в себе 2 функции. Он работает как пеногенератор и одновременно смешивает пену и раствор. Перемешивание происходит с очень высокой скоростью. За 1 с аппарат выполняет 140 перемешиваний. В результате получается мелкопористый пенобетон, не дающий никакой усадки.

Загрузить ещё

Пенобетон своими руками в домашних условиях

Содержание:

  • 1 Изготовление пенобетона в домашних условиях – общая информация
  • 2 Планируем изготовить пеноблоки своими руками – выбираем способ изготовления
    • 2.1 Из чего делают блоки – готовим необходимые материалы
    • 2.2 Инструмент, приспособления и оборудование для производства пеноблоков
  • 3 Какими свойствами обладает качественный пенобетон
  • 4 Технология производства пеноблоков в домашних условиях
    • 4. 1 Изготовление сборной формы для пеноблоков
    • 4.2 Приготовление цементно песчаного раствора
    • 4.3 Какой использовать пенообразователь для пенобетона
    • 4.4 Разливаем готовый пенобетонный раствор
  • 5 Заключение

Среди материалов, предлагаемых на рынке строительного сырья, особой популярностью пользуются пеноблоки, для изготовления которых применяются специальные установки для производства пенобетона. В достоинствах использования пеноблоков убедились многие застройщики. Ведь универсальный стройматериал обладает комплексом преимуществ. Владея технологией изготовления строительных смесей, несложно осуществить изготовление пенобетона в домашних условиях с помощью обычной бетономешалки и вспомогательного оборудования. Остановимся детально на нюансах технологии.

Изготовление пенобетона в домашних условиях – общая информация

Планируя производство пеноблоков в домашних условиях, следует изучить, какие технологические приемы используются для изготовления, разобраться, как правильно готовится цементно-песчаный раствор, а также подготовить необходимые для производства пенобетонной смеси материалы, инструмент и оборудование. Желая использовать самостоятельно изготовленные пеноблоки для строительства дома, необходимо знать свойства и характеристики пенобетонного материала. Остановимся более детально на этих моментах.

Пенобетонные блоки используются при возведении домов малой этажности

Планируем изготовить пеноблоки своими руками – выбираем способ изготовления

Используются различные технологии приготовления пенобетонной смеси на основе песка и цемента:

  1. Классическая. Для изготовления пеноблоков своими силами необходимо самостоятельно сделать пеногенератор или использовать покупной агрегат. Пеногенераторная установка направляет по магистралям состав в предварительно подготовленный раствор, включающий цемент, песок и воду. Рабочая смесь, смешанная с помощью бетоносмесителя с пенообразующим компонентом, подается для заливки в специальные формы. Их внутренние размеры соответствуют габаритам готовой продукции. Раствор твердеет в ходе гидратации портландцемента с образованием внутри пенобетонного массива воздушных ячеек. Процесс набора твердости осуществляется в условиях естественной температуры окружающего воздуха.
  2. Поризационная. Процесс производства пенобетона по поризационной технологии осуществляется с использованием специального устройства, называемого поризатором. Агрегат осуществляет введение сухих ингредиентов в пенообразователь, подаваемый под напором. Песчано-цементные частицы оседают на поверхности пенистых пузырей с образованием рабочего пеноматериала. Подготовленная смесь под напором подается по трубам на рабочий участок. Среди профессиональных строителей указанный технологический прием известен как сухой способ минерализации. Поризационная технология получила распространение в промышленном строительстве для непрерывной подачи пенобетонного раствора.

Для самостоятельного изготовления пенобетонных блоков наиболее распространена классическая технология с использованием пеногенератора.

Мастер может сам получить высококачественную пену, затратив на изготовление устройства минимум денег

Из чего делают блоки – готовим необходимые материалы

Процесс производства пеноблоков осуществляется в соответствии с рецептурой. Она регламентирует необходимую концентрацию компонентов смеси в зависимости от требуемого удельного веса пенобетона.

Независимо от марки изготавливаемого пенобетона, в состав смеси входят следующие ингредиенты:

  • вяжущее вещество, в качестве которого используется портландцемент марки М400 или М500. С возрастанием марки применяемого цемента улучшаются эксплуатационные свойства вспененного композита;
  • заполнитель в виде гранулированного керамзита или мелкофракционного песка. Применение вместо песка керамзитных гранул повышает теплоизоляционные характеристики пенобетона;
  • покупной или самостоятельно приготовленный пенообразователь. Важно хранить пенообразователь не более 20 дней с момента приготовления при температуре до 25 градусов Цельсия;
  • вода, подогретая до температуры 20-24 градусов Цельсия. Количество добавляемой воды определяется путем выполнения расчетов, соблюдая соотношение цемента и воды 5:2.

Для изготовления десяти кубических метров пенобетонной смеси потребуется:

  • портландцемент в количестве 3,2 т;
  • просеянный песок 2 т;
  • пенообразователь в объеме 10-15 л;
  • вода – 1,3 т.

Применение качественных компонентов, а также соблюдение рецептуры и технологии гарантирует рабочие характеристики пенобетона.

Перед тем, как как сделать пеноблоки в домашних условиях, следует ознакомиться с пропорциями для его изготовления

Инструмент, приспособления и оборудование для производства пеноблоков

В состав линии для изготовления пенобетона своими силами входит следующее оборудование:

  • бытовая бетономешалка;
  • пеногенерирующий агрегат;
  • компрессорная установка;
  • механический сепаратор;
  • устройство для дозировки воды;
  • соединительные трубы.

Также потребуются формовочные ящики для заполнения пенобетонным раствором. Не забудьте подготовить лопаты и ведра для подачи сырья в бетоносмеситель. При увеличенных объемах производства потребуется погрузчик или шнековый транспортер, ускоряющий подачу исходного сырья. Сегодня предлагаются мобильные установки для производства пенобетона в домашних условиях, которые можно недорого арендовать. Комплектность и мощность применяемого оборудования зависит от предполагаемых объемов производства.

Какими свойствами обладает качественный пенобетон

Пенобетон – популярный стройматериал, обладающий следующими достоинствами:

  • повышенными теплоизоляционными свойствами, обусловленными ячеистой структурой. Для отопления пеноблочных зданий требуется меньший объем затрат, так как в них лучше сохраняется тепло;
  • устойчивостью к воздействию отрицательных температур с последующим оттаиванием. Целостность пеноблоков сохраняется на протяжении 40-50 циклов глубокого замораживания;
Материал не боится химвоздействий, хорошо противостоит атмосферным осадкам
  • стойкостью к влиянию повышенной температуры, вызванной контактированием с открытым огнем. При пожароопасных ситуациях сохраняется целостность пенобетонных строений;
  • высокими шумоизоляционными характеристиками, благодаря которым обеспечиваются комфортные условия в помещении. Материал с пористой структурой эффективно поглощает внешние шумы;
  • воздухопроницаемостью, способствующей поддержанию комфортной влажности и осуществлению воздухообмена. В пенобетонном помещении не развиваются микроорганизмы, не образуются колонии грибков.

К не менее важным преимуществам пенобетона также относятся:

  • экологическая чистота;
  • небольшой объем затрат на самостоятельное изготовление;
  • легкость механической обработки;
  • увеличенные габариты пеноблоков;
  • небольшой вес изделий.

Наряду с достоинствами даже качественный пенобетон обладает некоторыми недостатками:

  • повышенной гигроскопичностью. Пенобетонные стены нуждаются в надежной защите;
  • увеличенной хрупкостью. При транспортировании и кладке следует оберегать блоки от механических повреждений.

Несмотря на недостатки, застройщики отдают предпочтение пенобетону благодаря серьезным преимуществам материала.

Технология производства пеноблоков в домашних условиях

Технология производства пеноблоков в домашних условиях предусматривает выполнение следующих работ:

Чем дольше замешивается композиция, тем больше разрушается пена, что недопустимо, так как чревато существенным снижением прочностных и иных характеристики готового пенобетона
  1. Подготовка исходных компонентов в количествах, соответствующих рецептуре.
  2. Приготовление необходимого объема пенообразователя из пеноконцентрата.
  3. Смешивание в бетоносмесителе цементно-песчаного раствора.
  4. Добавление воды и введение пены с последующим смешиванием.
  5. Заливка пенобетонной смеси в формовочные емкости.
  6. Отстаивание готовых блоков в емкостях.
  7. Извлечение продукции из форм для дальнейшей сушки.

Для самостоятельного изготовления блоков необходимо заранее приготовить разборную форму. Остановимся более детально на особенностях выполнения отдельных видов работ.

Изготовление сборной формы для пеноблоков

Изготовление своими руками формовочного ящика для заливки пеноблоков предоставляет возможность не ограничиваться стандартными габаритами изделий. Конструируя формовочную емкость, следует учесть количество блоков, которые будут заливаться за один прием.

Для изготовления формы применяются следующие материалы:

  • влагостойкая фанера;
  • металлический лист;
  • строганые доски.

Процесс изготовления формовочной емкости несложный:

  1. Подготовьте рабочий чертеж или эскиз формовочного ящика.
  2. Перенесите эскизные размеры на применяемый материал.
  3. Нарежьте боковые и поперечные заготовки требуемых размеров.
  4. Вырежьте дно формовочной емкости.

После изготовления отдельных элементов соберите форму. При использовании фанеры уложите внутрь ячеек полиэтилен, облегчающий извлечение готовых изделий и предохраняющий материал от поглощения влаги. Поверхность металлического ящика смажьте отработанным маслом.

Постарайтесь делать формы с максимально правильной геометрией

Приготовление цементно песчаного раствора

Процесс подготовки песчано-цементной смеси выполняется по следующему алгоритму:

  1. Очистите песок от примесей с помощью сита.
  2. Взвесьте необходимое количество портландцемента и песка.
  3. Загрузите ингредиенты в бетоносмеситель.
  4. Перемешайте в течение 5 минут до однородной консистенции.

После перемешивания в готовую смесь добавьте воду и смешайте в течение трех минут с предварительно подготовленной пеной.

Какой использовать пенообразователь для пенобетона

Качество пенообразователя влияет на эксплуатационные характеристики пенобетона. Применяются различные пенообразователи:

  • покупные, предлагаемые в специализированных магазинах. Они представляют собой концентрат, который разводится до требуемого состояния согласно рекомендациям предприятия-изготовителя;
  • самостоятельно изготовленные. В состав самодельного пенообразователя входят едкий натр в количестве 0,15 кг, 0,06 кг столярного клея и килограмм канифоли. Ингредиенты смешивают при небольшом нагреве до однородной консистенции с последующим добавлением воды.

Самостоятельно подготовленный пенообразователь не уступает по качеству готовому концентрату.

Разливаем готовый пенобетонный раствор

Заполнение формовочных емкостей осуществляется различными способами:

  • вручную при небольших объемах производства пенобетонных блоков;
  • с помощью бетононасоса при изготовлении блоков в промышленных объемах.

Залитый пенобетон твердеет в течение 10-12 часов, после чего изделия извлекаются из форм, устанавливаются на поддоны и сушатся в закрытом помещении. При комнатной температуре продолжительность сушки достигает 48 часов.

Заключение

Изготовление пеноблоков в домашних условиях позволяет сэкономить денежные средства на строительство дома. Для организации производства блоков важно тщательно ознакомиться с технологическими нюансами, подобрать необходимое оборудование и изучить рецептуру.

Сделать пенобетон своими руками в домашних условиях: состав, пропорции, оборудование

Главная » Стройматериалы » Кирпич, блоки, плиты

Опубликовано: Рубрика: Кирпич, блоки, плитыАвтор: Andrey Ku

Изделия из пенобетона активно используются застройщиками для возведения межкомнатных перегородок и частных домов. При желании пеноблоки можно изготовить самостоятельно, что позволяет существенно снизить затраты на проведение строительных мероприятий.

Пенобетон – современный материал с массой эксплуатационных преимуществ

Пеноблоки за счет ряда уникальных свойств идеальны для строительства малоэтажных домов. Изделия из пенобетона характеризуются:

  • Высокой экологичностью. В их состав входят исключительно природные, полностью безопасные компоненты.
  • Отличным теплоизоляционным потенциалом. Блоки состоят из ячеистого бетона, заполненного воздухом. Такая структура материала не позволяет попадать жаре внутрь дома летом и не выпускает тепло наружу зимой.
  • Простотой монтажа. Пеноблоки легко обрабатываются, разрезаются по заданным размерам и устанавливаются своими руками.
  • Эксплуатационной надежностью. Материал не боится химвоздействий, хорошо противостоит атмосферным осадкам.
  • Пожаробезопасностью. Перегородка из 15-сантиметровых по толщине пеноблоков не загорается в течение 3–4 часов.
  • Повышенной прочностью и малым весом. Масса пенобетонных изделий в 2,5 раза меньше, чем у стандартных кирпичей. За счет этого на основание постройки оказывается минимальная нагрузка. Можно неплохо сэкономить на обустройстве фундамента. А высокая прочность пеноблоков обеспечивает нагрузку на сжатие до 100 килограмм на каждый кубический сантиметр.
Пенобетон примечателен повышенной прочностью и малым весом

Также среди достоинств пенобетона отметим его отличную шумоизоляцию и повышенный показатель текучести. Благодаря последнему свойству процесс изготовления таких блоков своими руками упрощается и становится доступным большинству домашних умельцев.

Оборудование для производства пеноблоков – что потребуется?

Пенобетон производится в домашних условиях по простой технологии. Для ее реализации используются следующие приспособления и агрегаты:

  • пеногенератор;
  • компрессор;
  • бетоносмеситель;
  • насос;
  • формы.

Пеногенератор можно сделать своими руками. Принцип работы подобных устройств элементарен. Смесь пенного концентрата направляется в отсек смешения под 90-градусным углом, где происходит ее перемешивание с воздушным потоком. На раствор начинает действовать сила давления. Смесь подается в спецсопло (оно имеет усеченную форму). В нем состав сначала сжимается, а затем расширяется. Потом раствор под давлением выдавливается в особый патрон, где и получается пена.

Для изготовления самодельного генератора нужно приобрести и соединить последовательно (при помощи муфт) такие элементы – запорные и регулировочные вентили для подачи воздуха и смеси, камеру смешивания, усеченное сопло (в магазинах его продают под названием устройство Лаваля) диаметром 1 см, пенопатрон. Также потребуется насадка с сетчатой шайбой и резьбой. Некоторые мастера применяют шайбу-жиклер вместо сопла Лаваля. Но лучше этого не делать, так как показатель полезного действия пеногенератора может уменьшиться на 20–40 %.

Самодельный агрегат для получения пены функционирует от компрессора. Вам понадобится устройство, обеспечивающее давление порядка 5,5–6 атмосфер, с производительностью не менее 0,5 кубометров в час. Непосредственно пеноконцентрат разрешается подготавливать в отдельной емкости вместимостью 150–200 л. В генератор смесь подается при помощи любого бытового насоса.

Пеногенератор можно купить в любом строительном магазине

Если заморачиваться с самодельным парогенератором нет желания, его можно купить в специализированном строймагазине. Стоимость такого оборудования сравнительно доступная. А вот формы имеет смысл делать самостоятельно. Они могут изготавливаться из листов влагостойкой фанеры, который обязательно накрывают каркасом из металла, либо из металлических листов толщиной около 3,5 см. Форма – это обыкновенный ящик нужного вам размера. Заранее определитесь, сколько блоков планируется сделать за одну рабочую смену. Исходя из этого сбейте требуемое число форм. Повторное их использование не допускается.

Из чего делают блоки – пропорции материалов

Пенобетонные изделия для строительства частных домов производят из цемента, песка (дробленного либо природного), отвердителя и пенообразователя. Здесь есть нюансы. Цемент должен быть высокого качества (марки М-400, М-500) без каких-либо посторонних примесей. Рекомендуемая плотность песка на кубометр – 600 кг. Можно снизить затраты на изготовление блоков. Для этого вместо песка используйте отсев.

Пенообразователь несложно заказать в магазине, занимающемся продажей стройматериалов. Реально подготовить его и своими руками. Нужно смешать 60 г столярного клея, 150 г едкого натра и 1000 г канифоли и разогреть эти компоненты. Нагрев производится до тех пор, пока состав не станет по консистенции полностью однородным. Отвердитель следует покупать готовый. Самостоятельно делать его сложно и экономически нецелесообразно.

Для получения одного кубометра пенобетона высокого качества (плотностью не менее 600 кг/куб. см) необходимо брать компоненты в далее приведенной пропорции:

  • песок (отсев) – 200 кг;
  • цемент – 320 кг;
  • отвердитель – по рекомендации производителя;
  • пенообразователь – 1,2–1,5 л.

Вода (используйте обычную из водопровода) добавляется в количестве 100–110 л.

Самостоятельное производство пенобетона – общая схема и особенности

Первый шаг – заполнение бетономешалки нужным количеством песка, цемента и воды. Включаете агрегат и ждете получения однородного состава. После этого получаете пену (в самодельном или заводском пеногенераторе), добавляете ее в бетономешалку, досыпаете требуемый объем отвердителя. Снова смешиваете состав в течение нескольких минут. Длительность перемешивания более 3–4 минут не допускается. Чем дольше замешивается композиция, тем больше разрушается пена, что недопустимо, так как чревато существенным снижением прочностных и иных характеристики готового пенобетона.

После заполнение форм полученным раствором, смесь оставляют на сутки

Следующий этап работ – заполнение форм полученным раствором. После заливки смесь оставляют на сутки (иногда требуется и больше времени для застывания). Выдержка пенобетона производится при температуре окружающей среды на уровне 6 и больше градусов. Если работы выполняются зимой в неотапливаемом помещении, придется подогревать его с помощью электрокалорифера либо тепловой пушки. Через сутки вынимайте блоки из форм на поддоны, ждите еще 12–24 часа.

Чем качественнее отвердитель вы используете, тем меньше придется ждать застывания изделий.

Как видим, весь процесс самостоятельного производства пеноблоков занимает не более двух суток. С течением времени вы наловчитесь выполнять все необходимые операции намного быстрее. А значит, сможете делать качественные строительные изделия более оперативно. Грамотно организовать техпроцесс и повысить его эффективность помогут советы профи, которые приводятся далее:

  1. Используйте подогретую до 30° воду для смешивания состава.
  2. Для ускорения застывания смеси добавляйте в нее примерно 1,5 % (от общей массы композиции) хлористый кальций. Эта добавка, кроме всего прочего, снижает риск растрескивания блоков. Ее обязательно нужно применять при проведении работ в зимнее время.
  3. Если планируется регулярный выпуск пеноблоков, желательно соорудить простейшие пропарочные камеры, в которых изделия будут сушиться при температуре +60 °С. За счет этого вы сможете уменьшить время, необходимое для качественного созревания композиции.
  4. Постарайтесь делать формы с максимально правильной геометрией. Тогда готовые блоки будут соответствовать всем стандартам.
  5. Формы из фанеры после заливки состава накрывайте пленкой из полиэтилена, а металлические всегда смазывайте перед заполнением пенобетонной смесью любым машинным маслом.

Следуйте нашим советам, четко выдерживайте рекомендованные пропорции, и вы гарантированно получите самодельный пенобетон отличного качества.  Желаем удачи всем домашним мастерам!

0

Понравилась статья? Поделиться с друзьями:

изготовление пеноблока своими руками в домашних условиях, описание и состав, преимущества и минусы

Пенобетон — тип облегченного бетона, который изготовлен на основе цемента, песка или пепла, воды и пены. Пенобетонные блоки часто применяют при строительстве зданий с небольшим количеством этажей. Это объясняется их безупречной звукоизоляцией, чистотой в экологическом плане, удобством транспортировки и другими эксплуатационными характеристиками. Можно изготовить пенобетон своими руками в домашних условиях.

Описание и состав

Этот материал имеет долгую историю и впервые был использован в 1923 году. Изначально он применялся в качестве изоляционного материала. Улучшения в течение прошлых 20 лет в зонах производственного оборудования и более лучшее качество пены положительно отразились на спросе этого строительного материала.

Пенобетон можно назвать цементным материалом, состоящим из не менее 20 процентов пены, которая механически переходит в пластиковый раствор. Сухая плотность пенобетона может варьироваться от 300 до 1600 кг/м3. Прочность на сжатие материала, рассчитанная в 28 дней, колеблется от 0,2 до 10Н/мм2 или выше.

Состав материала варьируется в зависимости от плотности. Как правило, материал, который имеет плотность менее 600 кг/м3, будет состоять из цемента, пены, воды и некоторых добавок золы или известняковой пыли. Для того чтобы достигнуть более высокого показателя плотности, использовать можно песок. Пропорции для низкого показателя плотности — 1:1, для высокого — 1:3.

Для большей плотности (скажем, более 1500кг/м3) берется больше наполнителя и среднее количество песка. Для меньшей плотности количество наполнителя должно быть уменьшено. Рекомендуется не использовать материал с плотностью менее 600 кг/м3.

Ингредиенты для изготовления пенобетона:

  1. Обыкновенный цемент, но быстроотвердевающий цемент можно также использовать при необходимости. Пенобетон может включать в себя широкий спектр цемента и других составляющих, например, 30 процентов цемента, 60 процентов золы-уноса и известняка — 10 процентов. Содержание цемента колеблется от 300 до 400 кг/м3.
  2. Песок. Максимальный размер используемого песка может быть 5 мм.
  3. Поццоланас. Дополнительные цементные материалы такие как летучая зола и гранулированный доменный шлак широко используются в производстве пенобетона. Количество используемой золы-уноса колеблется от 30 до 70 процентов. Количество шлака колеблется от 10 до 50%. Это экономично и уменьшает количество используемого цемента. Можно добавить перегорелый кремнезем, что увеличит прочность.
  4. Пена. Гидролизованные белки или синтетические поверхностно-активные вещества являются наиболее распространенными формами, на основе которых производятся пены. Синтетические пенообразователи проще в обращении и дешевле. Их можно хранить в течение более длительного периода. Для производства этих пен требуется меньшая энергия. Пена может быть двух типов: влажная и сухая. Влажные пены с плотностью менее 100 кг/м3 не рекомендуются для производства пенобетона. Они имеют очень много воздушных пузырей. Во время процесса производится пена, которая имеет пузыри, размер которых колеблется от 2 до 5 мм. Сухая пена очень устойчива по своей природе. Раствор, состоящий из воды и пенообразователя, помещают в смесительную камеру под компрессорным воздухом. Произведенная пена имеет пузыри, размер которых намного меньше пузырей во влажной пене — не более 1 мм. Они при этом равномерно располагаются.

Ни в коем случае нельзя использовать грубый композит или другую тяжелую замену составляющим. Это связано с тем, что материалы будут погружаться в легкую пену. Свойства пенобетона зависят от следующих факторов:

  1. объем пены;
  2. содержание цемента в смеси;
  3. дополнительный материал;
  4. возраст.

Соотношение воды незначительно отражается на свойствах пенобетона, в отличие от пены и содержания цемента.

Отличительные свойства

Пену для производства пенобетона можно сравнить с пеной для бритья по своей консистенции. Воркабилит, который пенит бетон, имеет сильный пластифицирующий эффект. Это свойство пенобетона делает его сильно востребованным в большинстве применений. Пенобетон в свежем состоянии является тиксотропным по своей природе. Из-за высокого содержания воздуха снижается вероятность потеков в пенобетоне.

Если количество используемого песка при изготовлении пенобетона более высокое или использованы грубые композиты (за исключением типовых технических условий), то имеется вероятность сегрегации. Это также может привести к коллапсу пузыря, что уменьшит общий объем и структуру пены. С осторожностью необходимо выполнять перекачку свежего пенобетона. Свободное падение пенобетона в конце с завихрением может привести к нарушению структуры пузыря.

Теплопроводность пенобетона колеблется от 0,1 Вт/МК до 0,7 Вт/МК. Суша/усушка колеблется от 0,3 до 0,07% на 400 и 1600kg/m3 соответственно. Пенобетон не обладает эквивалентной прочностью, аналогичной автоклавному блоку с такой же плотностью. Под действием нагрузки гидравлическое давление, созданное внутри структуры, может спровоцировать деформацию пенобетона.

Затверделый пенобетон имеет хорошее сопротивление по отношению к низким и холодным температурам воздуха. Было отмечено, что при нахождении пенобетона в диапазоне температур от -18 до +25 градусов по Цельсию признаков повреждения не выявлено. Плотность пенобетона при этом оставалась в диапазоне от 400 до 1400 кг/м3 .

Преимущества и недостатки

У каждого строительного материала имеются свои преимущества и недостатки. Основные положительные стороны пенобетона:

  1. Пенобетонная смесь не оседает. Следовательно, для этого не нужно никакого уплотнения.
  2. Пенобетон в свежем состоянии отличается свободно протекающей консистенцией. Это свойство поможет в полном заполнении пустот.
  3. Структура пены позволяет ей свободно и равномерно распределяться.
  4. Пенобетон не дает значительных боковых нагрузок.
  5. Имеет свойство водопоглощения.
  6. Производство пенобетона довольно простое.
  7. Пенобетон обладает более высокой устойчивостью к низким и высоким температурам воздуха.
  8. Безопасность и быстрота монтажа.
  9. Рентабельный, требует меньшего обслуживания.

Параллельно с этим у материала есть и некоторые недостатки. К ним можно отнести:

  1. Наличие воды в смешанном материале делает пенобетон очень чувствительным.
  2. Сложность отделки.
  3. Долгое время замешивания.
  4. С увеличением плотности прочность на сжатие и изгиб уменьшается.

Особенности производства

Производство материала предполагает разбавление поверхностно-активных веществ в воде, пропускаемой через пеногенератор, который будет производить пену стабильной формы. Пена производится вперемежку с цементным раствором таким образом, что приборы были способны регулировать уровень ее плотности.

Необходимо иметь в виду, что некоторыми производителями поставляются наполнители с низкой плотностью в качестве пенобетона, поэтому следует соблюдать осторожность. Для производства используется два основных метода:

  1. встроенный метод,
  2. метод Pre-пены.

Цемент и песок смешивается с пеной в специальном блоке. Процесс перемешивания осуществляется при строгом контроле. Встроенный метод состоит из двух процессов:

  1. влажный;
  2. сухой.

Влажный метод встроенной системы: материалы, используемые во влажном методе, будут более сырыми по своей природе. С помощью серии статических встроенных смесителей основное вещество и пена перемешиваются совместно. Объем производства зависит от плотности вспененного бетона.

Сухой метод встроенной системы: здесь используются сухие материалы. Они засыпаются в специальные бортовые бункеры. Отсюда они правильно взвешиваются и смешиваются с помощью бортовых миксеров.

Во влажном способе производства пенобетона добавляют и смешивают пену. Этот метод подразумевает применение большого количества воды для смешения. Здесь специальная тележка доставляет основной материал для изготовления пенобетона к месту. Через другой конец тележки впрыскивается таблетированная пена. Во время всего этого процесса смеситель вращается не останавливаясь. Таким образом можно произвести небольшое количество для незначительных строительных работ.

Этот метод позволяет сделать пенобетон плотностью от 300 до 1200 кг/м3. В пене будет содержаться при этом от 20 до 60 процентов воздуха. Окончательный объем пены можно рассчитать, уменьшив количество другого основного материала. При этом методе довольно трудно контролировать стабильность воздуха и плотность.

Когда пена сформирована, она перемешивается с цементным раствором в соотношении цемента и воды 0,4 к 0,6. Если емкость для смешивания влажная, то пена будет неустойчивой. Если она слишком сухая, то Pre-пену будет тяжело размешивать.

Пеноблок в домашних условиях

Сделать пеноблок можно самостоятельно. Для этого потребуются лишь некоторые инструменты и составляющие. В зависимости от работы можно использовать пенобетон для обустройства стенных перегородок, в качестве заполнителя и термоизоляции для стен и крыш. Если следовать простым правилам, то можно сделать собственные бетонные плиты для напольного покрытия.

Пошаговое руководство:

  1. Подготовка материалов. Убедитесь, что у вас есть все необходимые материалы. Не беспокойтесь, если у вас нет бетономешалки, так как ее можно заменить простой лопатой.
  2. Рассчитать необходимое количество материалов. Решите, сколько пенобетона нужно сделать. В зависимости от характера вашего проекта убедитесь, что вы не делаете слишком много или слишком мало материала.
  3. Собрать бетономешалку. Если у вас нет бетономешалки, можно использовать дрель с прикрепленным смесителем для смешивания материалов.
  4. Подготовить смесь. Добавить 5 литров воды в бетономешалку.
  5. Добавить цемент. Для достижения наилучших результатов смешивания добавить первую половину вашего мешка бетонной смеси в бетономешалку. Все тщательно перемешать, подготовить, чтобы добавить песок.
  6. Добавить песок. Добавить от 1 до 2 ведер песка в бетономешалку. Песок диктует вес и твердость будущих блоков. Для получения более легкой смеси можно использовать 1 ведро песка, а для более тяжелой массы необходимо использовать 2 ведра песка. После того как песок был тщательно перемешан, подготовить смесь, чтобы добавить перлит.
  7. Добавить перлит. Перлит — это то, что придает будущему бетону пористую текстуру, когда он будет готов. Добавьте одно 20-литровое ведро перлита к полученной смеси. Перлит будет поглощать воду в смеси и сгущать ее. В зависимости от густоты смеси добавьте от 20 до 80 литров перлита. Как только вы достигнете желаемой густоты смеси, подготовьте, чтобы заполнить пресс-формы.
  8. Заполнить форму для блока. Убедитесь, что вы делаете это на ровной поверхности. Вылейте вспененную цементную смесь в формы. Если формы небольшие, налейте цементную смесь в тачку и заполните формы лопатой. Для наилучшего застывания смеси накройте пресс-формы полиэтиленовой пленкой.
  9. Дать высохнуть. Оставить пенобетон в сухом месте. Пенобетонные блоки сушатся около 24 часов, прежде чем они будут готовы к удалению из пресс-форм.
  10. Вынуть блоки. Будьте осторожны, когда проделываете это действие — им еще нужно некоторое время, чтобы принять свою форму.

После того как будет изготовлен пеноблок, его можно использовать по назначению для реализации своего строительного проекта.

Что такое пенобетон? | Propump Engineering Limited

Что такое пенобетон?

Пенобетон – невероятно полезный материал, используемый для производства больших объемов материала для заполнения пустот с относительно низкой прочностью; его можно легко перекачивать на большие расстояния, и он заполнит большинство полостей.

Пенобетон очень текучий и текучий, он будет «искать», не требуя выравнивания или уплотнения. Кроме того, пенобетоны будут течь по траншеям и герметизировать трубы, арматуру и заграждения. Пенобетоны предназначены для снижения нагрузки, уменьшения количества доставок на объект и обеспечения временного стабильного материала для работ, и это лишь несколько примеров.

Почему его называют пенобетоном?

Пенобетон классифицируется как песчано-цементный раствор с высоким содержанием воздуха или цементный раствор с содержанием воздуха более 20% по объему. «цементный материал, состоящий минимум на 20 процентов из пены». Смеси, которые предлагает компания Propump, содержат от 20 до 85% пены по объему. Большинство материалов, поставляемых Propump, содержат не менее 50% пены по объему.

Воздух уносится механически с использованием предварительно сформированной пены, которая смешивается с цементным материалом основы для получения смешанного материала более легкой плотности.

На месте пенобетон обычно производится с вовлечением воздуха не менее 50% по объему, до 85% в зависимости от смеси. Их плотность колеблется от 400 кг/м3 до 1800 кг/м3 с прочностью от 0,5 н/мм2 до 12 н/мм2. Другие распространенные названия цементного раствора — это «легкий газобетон» и «легкий ячеистый бетон», и это лишь некоторые из них.

Какими свойствами обладает пенобетон

Пенобетон используется в основном в качестве заполнителя пустот, его высокая скорость расширения и свойства жидкости часто делают его гораздо более экономичным материалом-заполнителем, чем жесткий бетон с низким содержанием цемента или твердые и рыхлые материалы, требующие уплотнения.

Предварительная пена и встроенный метод s

ПРЕДВЕСНАЯ ПЕНА
Этот метод производства пенобетона может выполняться на месте или за его пределами. Пенобетон производится путем частичного заполнения стандартного автобетоносмесителя, остальная часть затем заполняется пеной с использованием лопастей внутри «барабана» для перемешивания материала. Откачка будет выполняться как вторичная операция.

Преимущества

  • могут быть произведены за пределами площадки
  • Требуется только базовый генератор пеной
  • Идеально для рабочих мест, требующих минимальной пены

DisaDvantage 933

    9000.S. 3 9004.

    9000 OF DISEDVANTAGES 943

  • 9000 OF DISEDVANTAGES 943

  • 9002

    9000. ARVANTAGE. к качеству смесительных лопастей на грузовике

  • Объем будет потерян во время смешивания и перекачивания, поэтому требуется «избыточное пенообразование»
  • Плотность, записанная перед закачкой, будет отличаться от той, что была доставлена.
  • Трудно заменить вспененный материал в середине загрузки, если есть какие-либо проблемы с плотностью
  • Неэффективный метод транспортировки материала на площадку. Потребуется много доставок, в то время только наполовину заполненных.
  • Дороговизна в долгосрочной перспективе из-за частичной загрузки, взимаемой поставщиками готовых смесей
  • ВНУТРЕННИЙ МЕТОД
    Встроенное производство пенобетона позволяет производить как легкие пенобетоны, так и пенобетоны большей плотности. На строительную площадку будут доставлены грузовики с готовыми смесями с полной загрузкой материала. Встроенный пеногенератор и насосная система перекачивают чистый основной материал, в то время как пена впрыскивается под давлением в бетонные линии, затем этот материал смешивается через ряд встроенных смесительных пластин.

    Преимущества

    • Только полные поставки миксеров минимизируют общее количество поставки
    • Нет нагрузки на детали для неработающих материалов
    • Полное производство FOAM и решение для насыщения
    • 4449
    • Полное производство FOAM и насыщенное решение 9000
    • 9
    • . (при необходимости за одну загрузку)
    • Возможно изготовление материалов из составных частей (замес на месте)
    • в целом быстрее добыча и доставка готовой продукции
    • Возможность предоставить отдельное предварительное решение, если это необходимо

    Disadvantages

  • Комплекс Becpoke Machinery. дорого в эксплуатации и обслуживании
  • Большие легкие пенобетонные бухты, используемые для производства плит для строительства дорог на мелиорированных землях

    Базовые смеси для пенобетона

    Базовые смеси для пенобетонов отличаются от обычного «бетона» тем, что в пенобетоне используется песок, цемент и вода.

    Вяжущее вещество, относящееся либо к CEM1, либо к обычному портландцементу, используется, однако вяжущие материалы, такие как пылевидная топливная зола и молотый гранулированный доменный шлак, могут использоваться в различных количествах, их использование зависит от местной доступности, а также от реакции уровня различных пенообразователей.

    Почему в пенобетоне так много цемента?

    Базовая смесь из пенобетона будет иметь гораздо более высокое содержание цемента (минимум 350 кг/м3 – 1200 кг/м3) по сравнению со стандартной «бетонной» смесью для плит или даже конструкционного бетона. Причина этого как минимум двоякая.

    • Воздух снижает прочность бетона в геометрической прогрессии
    • Вода линейно снижает прочность бетона

    Пенобетонная смесь обычно имеет более высокое содержание воды, чем традиционный бетон, чтобы ее можно было перекачивать насосом -способен и смешивается с пеной. Не только это, но исторически сложилось так, что реагенты для снижения содержания воды или пластификаторы плохо смешиваются с пенообразователями.

    Производство пены требует разбавления поверхностно-активного вещества или пенообразователя водой перед вспениванием, типичное расширение для «сухой» пены на белковой основе составляет 20x. пенообразователь разбавляют водой на 3–5 % перед перемешиванием через «сигару» для получения стабильной пенной матрицы.

    Почему в пенобетоне нет заполнителя или камня?

    Для получения однородной однородной массы материал необходимо тщательно перемешать, чтобы было минимальное «выпадение» или расслоение агрегатов. При добавлении больших объемов воздуха и воды камни и другие крупные заполнители просто попадут на дно смеси, создавая большое отклонение компонентов смеси и, следовательно, некачественный конечный продукт. Наличие песка размером не более 5 мм означает, что все вяжущие и наполнители находятся во взвешенном состоянии вокруг пены по мере гидратации и отверждения цемента.

    Пенобетон, залитый в конусы для испытаний и испытаний, гарантирует, что наши материалы могут быть залиты на глубину, не разрушатся и их легкий вес не изменится

    Новости и статьи Propump

    Поточная система производства пенобетона обеспечивает наиболее точный и эффективный метод производства пенобетона на месте

    Почему стоит выбрать пенобетон?

    Пенобетон Области применения, включая использование жидких и сыпучих материалов для стабилизации грунта и заполнения массивом

    Проекты Propump

    Пенобетон, используемый для прокладки туннелей Crossrail, засыпки из пенобетона, туннелей и машин для прохода проходческих мостов

    Кубические формы для пенобетона

    Большое количество опалубок для пенобетона диаметром 100 мм и 150 мм хранится на складе, их можно приобрести с доставкой на следующий день.

    Актуальные цены уточняйте по телефону 01322 429 900 или электронная почта info@propump.co.uk

    Обзор современного состояния дел и практического опыта

    На этой странице

    РезюмеВведениеВыводыКонфликты интересовБлагодарностиСсылкиАвторское правоСтатьи по теме

    Пенобетон (FC) может стать альтернативой обычному бетону, поскольку статическая нагрузка на конструкцию и фундамент, способствует энергосбережению, снижает себестоимость продукции и трудозатраты при строительстве и транспортировке. В статье представлен современный обзор пенобетона с точки зрения его компонентов, производственных и материальных свойств, таких как усадка при высыхании, прочность на сжатие, стабильность и пористая структура и т. Д. Ввиду значения FC в инженерном строительстве. , он также включает в себя обзор современного состояния пенобетона в строительстве тоннелей и подземных сооружений. Также обсуждаются некоторые недостатки и технические ограничения, а также новые направления повышения производительности FC. В текущем обзоре сделан вывод о необходимости глубокого изучения долгосрочной производительности и свойств, связанных с улучшением. Это исследование может помочь уменьшить опасения потребителей и способствовать дальнейшему более широкому применению FC в гражданском строительстве.

    1. Введение

    FC представляет собой тип цементного раствора, содержащего цемент, воду и стабильную и однородную пену, вводимую с использованием подходящего пенообразователя [1–3], которые можно рассматривать как самоуплотняющиеся материалы [4]. Другими академическими терминами, описывающими этот материал, являются легкий ячеистый бетон [5], пенобетон низкой плотности или ячеистый легкий бетон и т. д. [6–8]. На практике он обеспечивает удовлетворительные решения для решения различных задач и проблем, возникающих в строительной деятельности. Меньшее количество химических веществ, содержащихся в этом материале, хорошо отвечает устойчивым и экологическим требованиям, а иногда его можно частично или даже полностью заменить обычным бетоном [9]. , 10]. Текстурная поверхность и микроструктурные ячейки позволяют широко использовать его в областях теплоизоляции [11, 12], звукопоглощения [13, 14] и огнестойкости [15, 16]. В последние годы построено большое количество экологически чистых зданий с использованием ТЭ в качестве неконструктивных элементов [17, 18]. Он также используется для заполнения абатментов мостовидных протезов для устранения дифференциальной осадки [19]. Кроме того, также сообщается о применении для производства сборных компонентов [20], фундамента здания [21–23] и буферной системы аэропорта [24]. Пенобетон широко используется в строительстве в разных странах, таких как Германия, США, Бразилия, Великобритания и Канада [25].

    Этот материал возродил интерес к подземному строительству. Это требование подземной конструкции для управления перекрывающей статической нагрузкой [26–34], тогда как контролируемая плотность и малый собственный вес [35, 36] могут быть эффективно использованы для снижения статической нагрузки. Другие свойства, такие как сейсмостойкость, способность к идеальной согласованной деформации и простота прокачки, также способствуют повышению популярности этого материала [37, 38]. В настоящее время FC быстро продвигается в качестве строительных материалов для туннелей и подземных работ. Его превосходная самотекущая способность может быть использована для заполнения пустот, провалов, вышедших из употребления канализационных труб, заброшенных метро и так далее. Небольшой и контролируемый собственный вес делает его пригодным для уменьшения нагрузки или элементов футеровки в системах туннелей и метро [39].–41].

    Несмотря на ограниченное количество исследований практического применения FC в гражданском строительстве, его свойства глубоко изучены. Например, Тан и др. [42] провели исследование свойств деформации при сжатии FC, используемого в качестве элемента футеровки, с целью дальнейшего объяснения реакции на напряжение и деформацию. Экспериментальные результаты показали, что прочность на сжатие FC увеличивается с плотностью и всесторонним давлением, тогда как модуль упругости имеет положительную корреляцию только с плотностью независимо от всестороннего давления. И никакой заметной корреляции между максимальной деформацией и плотностью не наблюдалось, но пиковая деформация увеличивается с ограничивающим давлением. Тикальский и др. [43] изучили морозостойкость ячеистого бетона и предложили усовершенствованный метод испытаний на замораживание-оттаивание. Они сообщили, что глубина впитывания считается критическим предиктором при разработке морозостойкого бетона, что будет способствовать повышению эффективности с точки зрения использования FC в качестве изоляционного материала для туннелей в холодных регионах. Сан и др. [44] исследовали влияние различных пенообразователей на прочность на сжатие, усадку при высыхании и удобоукладываемость FC, что будет полезно для определения деталей спецификации и реализации. Более того, Амран и соавт. [37] рассмотрели состав, процесс приготовления и свойства FC, в то время как основное внимание в обзоре, организованном Ramamurthy et al. [38] заключается в классификации литературы по пенообразователям, пенообразователям, цементу, наполнителям, пропорциям смеси, методам производства, свойствам ТК в свежем и отвержденном виде и т. д. За последние несколько десятилетий достигнут значительный прогресс в применении ТК. В Канаде ТК на основе цемента широко используется для заливки туннелей [45]. Чжао и др. [46] разработали материал на основе пеноцемента в качестве расходуемой конструкционной облицовки тоннеля, используемой в условиях действия взрывной нагрузки. Эта жертвенная облицовка на основе FC с оптимизированной толщиной эффективно снижает динамические реакции, вызванные взрывными нагрузками в туннеле. Чой и Ма [47] использовали легкий FC для облегчения туннельного дренажа, тогда как он был успешно реализован в двухполосном автомобильном туннеле в Южной Корее. Успешное применение было достигнуто благодаря эффективному образованию и распределению пен с открытыми порами, обладающих отличной проницаемостью.

    В связи с бурным развитием FC и производственных технологий применение FC в туннелях и подземных работах открыло большие перспективы. В этом обзоре кратко описывается история и развитие FC, а также обсуждаются некоторые перспективы. Разработаны технические свойства и преимущества ТЭ для инженерного строительства. Цель этого обзора — осветить инженерные свойства, свойства материалов и практические применения в туннельном и подземном строительстве.

    2. Пенобетон
    2.1. История и последние разработки

    В ранней литературе существует путаница между FC и аналогичными материалами, т. е. газобетоном и бетоном с вовлечением воздуха [48]. Однако одно определение (т. е. ФК определяется как вяжущий материал с не менее 20 % пены по объему в пластичном растворе), введенное Ван Дейком [49], четко отличает ФК от газобетона [50, 51] и воздуха. -увлекаемый бетон [52]. Замкнутая система воздушных полостей в ТЭ значительно снижает его плотность и вес и в то же время обеспечивает эффективную теплоизоляцию и огнестойкость [26, 53].

    Первый ТЦ на основе портландцемента был запатентован Акселем Эрикссоном в 1923 г., после чего началось мелкосерийное коммерческое производство [54]. Валора провел первое всестороннее исследование в 1950-х годах [55]. Позже Руднаи [56], Шорт и Киннибург [57] систематически сообщали о составе, свойствах и приложениях FC. Первоначально FC рассматривался как материал для заполнения пустот, стабилизации и изоляции [58]. Бурное развитие этого нового составного материала в зданиях и сооружениях усилилось в конце 19 века.70-х [59]. Ориентированная на правительство оценка FC может рассматриваться как важное событие на пути к дальнейшему расширению применения FC.

    За последние 30 лет ТЭ широко применяются для насыпной засыпки [38], ремонта канав, подпорной стены [60], обратной засыпки устоя моста [17], плитной конструкции бетонного перекрытия [18], утепления жилья [37]. ] и т. д. (рис. 1). В настоящее время люди все больше заинтересованы в использовании его в качестве неструктурного элемента или полуконструкции для подземных инженерных работ, таких как цементные работы для туннелей, обработка повреждений и облицовочные конструкции.

    2.2. Компоненты материала и подготовка

    Основные компоненты FC состоят из (1) воды, (2) связующего, (3) пенообразователя, (4) наполнителя, (5) добавки и (6) волокна. Современные исследования и выводы по этим компонентам на сегодняшний день описаны следующим образом:   Вода: Потребность в воде для составляющих материалов зависит от состава, консистенции и стабильности массы раствора [38]. Более низкое содержание воды приводит к жесткости смеси, что легко приводит к разрыву пузырей [61]. Более высокое содержание воды приводит к тому, что смесь становится слишком жидкой для размещения пузырьков, что приводит к отделению пузырьков от смеси [1]. Американский институт бетона (ACI) рекомендует, чтобы смешанная вода была свежей, чистой и пригодной для питья [62]. Иногда смешанная вода может быть заменена водой эквивалентной производительности, полученной из коммунального хозяйства, в случае, если крепость FC может достигать 90% в течение указанного времени отверждения [38]. Связующее: Цемент является наиболее часто используемым связующим. Обычный портландцемент, быстротвердеющий портландцемент, сульфоалюминат кальция и высокоглиноземистый цемент можно использовать в диапазоне от 25% до 100% содержания вяжущего [59, 63]. Пенообразователь: Пенообразователь определяет плотность FC, контролируя скорость образования пузырьков в цементном тесте. Пенообразователь на основе смолы был одним из первых пенообразователей, использовавшихся в FC. К настоящему времени получены и разработаны синтетические, белковые, композитные и синтетические поверхностно-активные вещества, при этом наиболее часто используются синтетические и белковые поверхностно-активные вещества [64]. Наполнитель: Различные наполнители, такие как микрокремнезем, летучая зола, известняковый порошок, гранулированный доменный шлак и летучий керамит [61], широко используются для улучшения механических характеристик ТЭ [65–67]. Добавление этих наполнителей полезно для улучшения состава смеси, долговременной прочности и снижения затрат. Кроме того, некоторые мелкие заполнители, такие как мелкий песок [68], переработанный стеклянный порошок [69] и стружка с модифицированной поверхностью [70], обычно используются для производства ТЭ высокой плотности. Добавка: Обычно используемая добавка включает понизитель содержания воды, гидроизоляционную добавку, замедлитель схватывания, ускоритель коагуляции и т. д. Всегда считается, что пластификаторы улучшают совместимость [43]. На самом деле, они определяются как понизители воды для улучшения характеристик свежего бетона за счет снижения текучести и пластичности, и заметного влияния на сегрегацию бетона не наблюдалось [71, 72]. Волокно: Различные волокна добавляются в FC для повышения прочности и уменьшения усадки. В основном это полипропилен [73, 74], стекло и полипропилен [75], красный рами [76, 77], пальмовое масло, сталь [78], кокос [79].], макулатура, целлюлоза [80], углерод и полипропилен [81], которые обычно вводят в количестве от 0,2% до 1,5% от объема смеси.

    FC обычно получают методом предварительного вспенивания или смешанным вспениванием [37]. Большинство обычных смесителей, таких как наклонный барабан, тарельчатый смеситель, используемый для бетона или раствора, применимы для производства FC. Тип смесителя, пропорция смеси и порядок смешивания, используемые для FC, зависят от принятия двух вышеупомянутых методов [38]. Основные процедуры с использованием этих двух методов представлены ниже:  Метод предварительного вспенивания. (1) Пена и базовая смесь готовятся независимо друг от друга. (2) Полностью перемешайте пену и базовую смесь [82]. Метод смешанного вспенивания. (1) Поверхностно-активные вещества или пенообразователь смешиваются с основной смесью (особенно с цементным тестом). (2) Пена образует ячеистые структуры в FC.

    Существует два способа образования пузырьков: сухой или мокрый. Сухой процесс дает более стабильные пузырьки размером менее 1 мм по сравнению с мокрым процессом, при котором размеры образующихся пузырьков составляют от 2 до 5 мм. Стабильная пена помогает противостоять давлению раствора до тех пор, пока цемент не затвердеет, что выгодно для создания надежной пористой структуры в FC [83].

    Хотя процесс смешивания и качество FC в этих двух методах можно контролировать, метод предварительного формования считается более предпочтительным, чем метод формирования смеси из-за следующего [84]. (1) Более низкие требования к пенообразователям [55] (2) Содержание пенообразователя тесно связано с содержанием воздуха в смеси

    2.3. Свойства материала

    В настоящее время все еще существуют слабые места и низкая износостойкость FC. Обсуждение свойств материала в этом разделе в основном основано на практических применениях, где существуют потенциальные проблемы, такие как (1) грунтовые воды, (2) недостаточная прочность конструкции, (3) трещина/разрушение конструкции, (4) проблема стабилизации, и (5) коррозия. Свойства материала, такие как усадка при высыхании, прочность на сжатие и долговечность, обсуждаются в обзоре литературы.

    2.3.1. Усадка при высыхании

    Отсутствие крупных заполнителей приводит к усадке ФЦ в 4–10 раз большей, чем у обычного бетона [15, 37]. На усадку при высыхании влияет множество факторов, таких как плотность, пенообразователь, наполнитель, добавка и содержание влаги. В таблице 1 представлены различные значения усадки при высыхании, наблюдаемые у некоторых материалов на основе цемента.

    Как правило, усадка при высыхании уменьшается с уменьшением плотности [37]. Различия в усадке, вызванные пенообразователями, связаны с пористой структурой ФК, а меньшая связность пор способствует уменьшению усадки при высыхании [44]. Джонс и др. [86] наблюдали уменьшение усадки при высыхании, когда в качестве наполнителя вместо летучей золы использовался мелкий песок, потому что мелкий песок обладает превосходной способностью противостоять усадочной деформации. Многие результаты показывают, что мелкие заполнители, такие как легкий керамзит [87], вспученный перлит, стекловидная микросфера [88] и магнезиальный расширяющий агент [89].] вместе с уменьшением объема пены [90] может уменьшить усадку при высыхании. Между тем, ограничительные эффекты от увеличения количества воды и заполнителя также способствуют снижению усадки при высыхании [91].

    Сообщается, что метод автоклавирования снижает усадку при высыхании на 12–50% и обеспечивает повышение прочности; поэтому автоклавирование является идеальным вариантом для поддержания изделий ТК в пределах приемлемого уровня прочности и усадки [15]. Для уменьшения усадки при высыхании заслуживают дальнейшего изучения некоторые аспекты, такие как контроль содержания воды, выбор связующего и пенообразователя, а также модификация смеси мелким заполнителем. Использование волокон может значительно повысить сопротивляемость усадке при высыхании за счет (1) повышения прочности на растяжение цементной смеси, (2) предотвращения дальнейшего развития трещин в цементной смеси и (3) повышения способности сопротивляться деформации. В таблице 2 обобщены и рассмотрены различные результаты и данные об усадке при высыхании.

    Некоторые неблагоприятные факторы, такие как плохое раннее отверждение, недостаточные меры по сохранению воды или суровые производственные условия, могут вызвать испарение воды, что приведет к усадке или даже растрескиванию FC. Некоторые технические меры, улучшающие эти ситуации, проиллюстрированы следующим образом: (1) Подходящая дозировка цемента. (2) Более низкое водоцементное отношение. (3) Усиление водосбережения на ранней стадии. (4) Используйте гидроизоляционный агент. (5) Используйте предотвращение трещин. сеть.

    2.3.2. Прочность на сжатие

    Хотя FC был глубоко изучен, некоторые недостатки, такие как низкая прочность, по-прежнему ограничивают его более широкое применение [100]. Прочность ФК определяется различными вяжущими материалами, дозировкой цемента, пропорцией смеси, водоцементным отношением, объемом пены, пенообразователем, методом отверждения, добавкой и т. д. [101]. Таблица 3 иллюстрирует некоторые исследования различных факторов, влияющих на прочность на сжатие FC.

    В определенной степени плотность влияет на силу. Следовательно, всегда нужно искать баланс между прочностью и плотностью, чтобы максимизировать прочность при максимально возможном снижении плотности. Иногда этого можно добиться за счет оптимизации вяжущих материалов и выбора качественных пенообразователей и сверхлегких заполнителей. Намбиар и др. [1, 61] указали, что типы наполнителя определяют водотвердое отношение, когда плотность FC постоянна, а уменьшение размера частиц песка будет способствовать повышению прочности. Объем пены оказывает заметное влияние на текучесть ФК, а уменьшение размера частиц наполнителя оказывает положительное влияние на повышение прочности ФК. Парк и др. [111] добавили углеродное волокно в базовую смесь, чтобы получить армированный углеродным волокном FC, и они сообщили, что прочность и вязкость разрушения явно улучшились благодаря эффекту армирования углеродным волокном. Результаты подтвердили, что разумное водоцементное отношение оказывает заметное влияние на повышение прочности. Более высокое водоцементное отношение обеспечивает превосходную текучесть цементного раствора, благодаря чему пена равномерно распределяется в цементном тесте, что способствует увеличению прочности. Наоборот, уменьшение водоцементного отношения приводит к ухудшению текучести, что снижает прочность. Доминирующим фактором, влияющим на прочность, является качество цемента, добавляемого в строительный раствор, тогда как высокопрочный цемент считается эффективным способом повышения прочности. Однако его следует добавить надлежащим образом, учитывая увеличение последующих затрат.

    Исследования показали, что прочность ФК снижается с увеличением пустот [112–114]. Влияние пенообразователя на прочность в основном проявляется в аспектах размера пузырьков, равномерности распределения пузырьков, устойчивости пены и пенообразующей способности. В идеале пенообразователи должны характеризоваться высокой пенообразующей способностью, низкой водонесущей способностью на единицу и незначительным неблагоприятным воздействием на FC [115–118]. Можно рассмотреть попытки и исследования по выбору высокоэффективного пенообразователя для получения мелких и однородных пузырьков. Экспериментальные результаты показали, что водоцементное и воздушно-зольное отношение имеют решающее влияние на прочность ФЦ [119]., 120]; также сообщается, что добавление волокон помогает увеличить силу [73, 74, 121]. Некоторые исследователи также исследовали модели прогнозирования прочности на сжатие. Эти результаты в основном основаны на искусственной нейронной сети [122–124], машине экстремального обучения [125] и эмпирических моделях, основанных на регрессионном анализе [126]. В таблице 4 приведены модели прогнозирования прочности на сжатие FC на сегодняшний день.

    2.3.3. Долговечность

    Подземные элементы обычно сталкиваются с различными неблагоприятными условиями, такими как изменение температуры, циклы замораживания-оттаивания и кислотно-щелочная коррозия. Эти факторы могут привести к плохой долговечности конструкций и элементов на основе ТЭ, что приведет к структурным повреждениям, что серьезно повлияет на безопасность проекта.

    (1) Проницаемость . Водопоглощение ФК связано с инфильтрацией капиллярных пор и инфильтрацией связанных пор. Кокс и Ван Дейк [134] сообщили, что водопоглощение FC было выше, чем у других типов бетона из-за не менее 20% пены, встроенной в пластиковый раствор. Эта способность, как правило, в два раза выше, чем у обычного бетона с тем же соотношением воды и вяжущего [63]. Исследование, проведенное Ньяме [135], показало, что проницаемость бетонного раствора уменьшается с уменьшением пористости после добавления заполнителя. Увеличение объема заполнителя в смеси приводит к увеличению проницаемости. Между тем, увеличение количества золы/цемента в базовой смеси пропорционально увеличивает паропроницаемость, особенно при низких плотностях [114]. Кирсли и др. [131] изучали влияние различных типов летучей золы на пористость и проницаемость. Результаты показали, что плотность в сухом состоянии напрямую влияет на пористость, но незначительное влияние летучей золы на пористость наблюдалось. Кроме того, была предложена эмпирическая модель прогнозирования проницаемости: где K D = Скорость времени потока паров через единицу площади, G = Тщательная потеря веса T Время в часах, A C = COSTER-AREAREA. 2 ), d  = толщина образца в м , t  = время в час, и Δ p  = расстояние между сухой и влажной сторонами образца.

    Hilal et al. использовали различные методы. [136] для исследования влияния структуры пор, пористости и критического размера пор на проницаемость и водопоглощение FC. Результаты показали, что критический диаметр пор и размер диаметра пор (>200 нм) уменьшаются с увеличением плотности, что тесно связано с проницаемостью. Следовательно, следует подчеркнуть способность производителя обеспечивать содержание воздуха в стабильных, мелких и однородных пузырьках, что способствует снижению проницаемости цементного теста из-за их целостности и эффекта изоляции.

    Адсорбция FC в основном зависит от типа наполнителя, структуры пор и механизма инфильтрации. Сообщалось, что заполняющий эффект минеральных заполнителей влияет на структуру пор и проницаемость цементного теста [137]. Джонс и Маккарти [138] сравнили различия в адсорбции между ТЦ на основе песка и на основе летучей золы. Результаты показали, что смесь на основе летучей золы обладает более высоким водопоглощением, чем смесь, смешанная с песком. Адсорбция FC в целом ниже, чем у соответствующей основной смеси, и уменьшается с увеличением объема пены [139].]. Исследование, проведенное Авангом и Ахмадом [78], показало, что водопоглощение резко возрастает за счет использования в базовой смеси стальных и полипропиленовых волокон. Каждый тип волокна имеет различную морфологию поверхности, которая играет важную роль в скорости водопоглощения легкого FC. Другое исследование показало, что использование пуццолановой добавки и метода турбулентного перемешивания может привести к получению водостойких и прочных ТЭ [140].

    (2) Морозостойкость . Цикл замораживания-оттаивания является одним из факторов, ответственных за износ и разрушение бетона [141, 142]. Исследование, проведенное Tsivilis et al. [143] выявили, что добавление порошка известняка снижает морозостойкость бетонов на основе ФК и известкового цемента, что указывает на более низкую стойкость к замораживанию и оттаиванию по сравнению с чисто цементными бетонами. Тикальский и др. [43] провели циклические испытания на замораживание-оттаивание FC с различными пропорциями смеси на основе усовершенствованного метода, и было обнаружено, что прочность на сжатие, начальная глубина проникновения и водопоглощение оказывают значительное влияние на морозостойкость, но мало влияют на плотность. и водопроницаемость по морозостойкости.

    (3) Карбонизация . Карбонизация увеличивает риск растрескивания и потери прочности ТЭ [140]. Джонс и Маккарти [59, 138] также сообщили, что более высокая частота карбонизации наблюдалась в бетоне низкой плотности. По сравнению со смесью, замененной мелким песком, замена летучей золы цементом в смеси заметно улучшила устойчивость к карбонизации [86]. Кроме того, содержание пены увеличивается с уменьшением плотности пены, чтобы уменьшить науглероживание в ТК.

    (4) Коррозия . Стойкость ТЭ к эрозионным средам зависит от его ячеистой структуры. Однако эта структура не обязательно снижает способность сопротивления проникновению воды, в то время как пустоты создают амортизирующий эффект, препятствующий быстрому проникновению [139]. Сульфат является одним из коррозионных агентов, влияющих на срок службы ТЭ, в то время как риск повреждения от щелочно-кремниевой реакции на вторичном заполнителе незначителен [144]. Сульфатная эрозия определяется как сложный процесс, на который могут влиять различные факторы, такие как тип цемента, водоцементное отношение, время воздействия, минеральная примесь, проницаемость и т. д. [145–147]. Ранджани и Рамамурти [148] в течение 12 месяцев непрерывно оценивали эффективность ТЭ с переменной плотностью от 1000 до 1500 кг/м9.0299 3 путем погружения примеров FC в растворы сульфата натрия и растворы сульфата магния соответственно. Результаты показали, что скорость расширения ТЭ в среде сульфата натрия была на 28 % выше, чем в среде сульфата магния, что привело к потере массы образцов в среде сульфата магния на 1 %. Кроме того, коррозионная стойкость исследованных образцов увеличивается с уменьшением плотности ТЭ [149].

    2.3.4. Теплопроводность

    Выдающиеся теплоизоляционные свойства FC делают его популярным в строительной изоляции. В соответствующих исследованиях широко сообщается, что теплопроводность является важным параметром, влияющим на характеристики теплоизоляции. ФК обладает отличными теплоизоляционными свойствами благодаря своей пористой структуре. Значения теплопроводности составляют 5–30 % от измеренных на обычном бетоне и колеблются от 0,1 до 0,7 Вт/мК при значениях плотности в сухом состоянии 600–1600 кг/м9. 0299 3 , уменьшаясь с уменьшением плотности [150]. Теплопроводность FC определяется наполнителем, плотностью, волокном, соотношением компонентов смеси, температурой и структурой пор.

    (1) Влияние наполнителя . Существенное влияние на теплопроводность оказывают различные заполнители и минеральные примеси. Было замечено, что добавление легкого заполнителя в FC снижает теплопроводность [151]. Уточнено, что значение теплопроводности для керамзитобетона с сухой плотностью 1000 кг/м 3 составляет 1/6 от измеренного на обычном цементном растворе [152]. Было установлено, что искусственное введение пор в матрицу раствора в сочетании с использованием легкого заполнителя с низкой плотностью частиц способствует снижению теплопроводности [91]. ТЭ со значением теплопроводности 0,06–0,16 Вт/мК можно получить путем умеренного заполнения пористого раствора частицами полистирола [153]. Гианнакоу и Джонс [154] заявили, что превосходные свойства летучей золы, такие как низкая плотность и полые частицы, позволяют увеличить пути теплового потока, чтобы уменьшить теплопроводность. В исследовании Джонса и Маккарти [88] сообщается, что типичные значения теплопроводности ТЭ с сухой плотностью 1000–1200 кг/м 3 в диапазоне от 0,23 до 0,42 Вт/мК. Также было подтверждено, что замена цемента на 30% PFA (золой пылевидного топлива) приводит к снижению теплопроводности на 12–38%. Исследования, проведенные Xie et al. [104] обнаружили, что использование бентонитовой суспензии улучшает теплоизоляционные характеристики ТЭ, и заметили, что при плотности 300 и 600 кг/м 3 образцы с 10% бентонитовой суспензией подверглись наибольшему снижению теплопроводности.

    (2) Влияние плотности . Для ТЭ установлено, что теплопроводность пропорционально реагирует с плотностью. Вейглер и Карл [91] наблюдали снижение общей теплоизоляции на 0,04 Вт/мК при снижении плотности на каждые 100 кг/м3. Теплоизоляционные характеристики снижаются с увеличением плотности объема [155, 156]. Что касается применения ФК в кирпичной кладке стен, то было получено увеличение теплоизоляции до 23% по сравнению с обычным бетоном при укладке внутреннего листа стены из ФК плотностью 800 кг/м 9 . 0299 3 [111].

    (3) Влияние волокна . Наги и др. [78] изучали теплопроводность нескольких волокон, состоящих из AR-стекла, полипропилена, стали, кенафа и волокон масличной пальмы. Результаты показали, что теплопроводность на образцах с включением стальной фибры выше, чем у ТЭ с включением других волокон, а наименьшую теплопроводность показало полипропиленовое волокно. Это объясняется тем, что стальная фибра сама по себе является хорошим проводником тепла. Кроме того, чем больше количество волокон, тем выше теплопроводность. В другом исследовании Nagy et al. [157] исследовали тепловые свойства бетона, армированного стальной фиброй, и обнаружили, что добавление стальной фибры не обязательно увеличивает теплопроводность. Это связано с тем, что добавление волокна приводит к увеличению пористости, что снижает плотность и теплопроводность. Долговечные свойства FC, состоящего из пяти различных синтетических и натуральных волокон, таких как полипропилен, AR-стекло, кенаф, сталь и волокна масличной пальмы, были изучены Awang et al. [158]. Они подтвердили, что максимальное снижение усадки и теплопроводности было получено при использовании полипропиленовых волокон.

    (4) Влияние соотношения компонентов смеси . Доказано, что изоляционные способности FC чувствительны к изменению соотношения раствора и пены [49]. Эта разница более заметна в образцах с низкой плотностью от 200 до 300 кг/м 3 [159]. Более плотное цементное тесто с более низким водоцементным отношением легче образует поры большего размера, чем цементное тесто с более высоким водоцементным отношением. Таким образом, конвективный теплообмен в более крупных порах при перепаде температур увеличивает теплопроводность ТЦ с меньшим водоцементным отношением [159].].

    (5) Влияние температуры . Сообщается, что теплоизоляция улучшается с понижением температуры. Ричард и др. [160] изучали теплоизоляционные характеристики пористого бетона, применяемого в условиях низких температур, и получили удовлетворительные результаты. В то же время Ричард и соавт. В работе [161] проведен обзор тепловых и механических свойств ТЭ в диапазоне плотностей 640–1440 кг/м 3 при температуре окружающей среды от 22 до –196°С. Результаты показали, что показатель теплопроводности пенобетона значительно снижается на 26% при снижении температуры от 22 до -196°С.

    (6) Влияние пористой структуры . Согласно Кумару и соавт. [162], теплопроводность была примерно на 50% ниже, чем у обычного бетона с теплопроводностью 1,43 Вт/мК в результате однородного размера пор в ячеистых легких бетонах (CLCs). Было обнаружено, что ТЭ с большим размером и более широким распределением пузырьков имеют меньшую теплопроводность при низких плотностях [104]. Также было показано, что чем выше пористость, тем ниже теплопроводность. Однако было обнаружено, что увеличение прочности соединения пористых каналов иногда увеличивает теплопроводность. Расположение и относительная ориентация пор имеют большое влияние на теплопроводность. Большее термическое сопротивление наблюдалось, когда поры располагались под прямым углом к ​​тепловому потоку, что приводило к прохождению большего количества тепла через поры. Наоборот, если слой пор параллелен направлению теплового потока, будет создаваться меньшее тепловое сопротивление [163].

    2.3.5. Структура пор

    Важнейшей задачей при производстве FC является контроль характера, размера и распределения пор, поскольку характеристики пор являются ключевым фактором для определения плотности и прочности FC. Поры могут быть созданы путем (i) смешивания газоотделителя, такого как H 2 O 2 , или порошка цинка в пастеровском цементном растворе, или (ii) введения в раствор большого объема пузырьков. Часто различные методы вспенивания, состав смеси и процесс отверждения приводят к образованию отдельных пузырьков с разными размерами и распределением, что еще больше влияет на характеристики ТЭ.

    Пористость является важным фактором, определяющим прочность на сжатие, теплопроводность и проницаемость FC. Эти поры состоят из межслойных пор/пространств, гелевых пор, капиллярных пор и воздушных полостей, причем размеры пор варьируются от наномасштаба до миллиметрового масштаба [128]. Некоторые параметры, такие как объем, размер, распределение пор по размерам, форма и расстояние между порами, могут быть использованы для характеристики этих пор [38]. Гелевые и капиллярные поры в основном определяют особенности микроструктуры [53]. Использование добавок и изменение соотношения воды и цемента будет влиять на характеристики пористости. Для заданной плотности добавление добавки уменьшает размер пор и связность, чтобы получить более высокую прочность. Введение минеральной добавки, такой как шлак или летучая зола, в ТЭ приводит к уменьшению распределения пор по размерам и общей пористости [164]. Батул и др. [165] изучали особенности распределения пор по размерам в ТК на основе цемента. Результаты показали, что чем уже распределение пор, тем больше проводимость и меньше плотность. Добавление суперпластификатора в сочетании с другими добавками в пенобетон может еще больше улучшить пористую структуру [106].

    Исследователи обнаружили, что на поры может влиять водоцементное соотношение из-за изменений реологических свойств и способности сопротивляться разрушению из-за пены. Отмечено, что поры были маленькими, неправильной формы и сильно связанными при водоцементном отношении ниже 0,8. Эти поры были определены как округлые, расширенные и с более широким распределением размеров пор при водоцементном отношении более 0,8, поскольку способность ограничивать рост пузырьков воздуха снижалась при высоком водоцементном отношении [166]. Сообщается, что снижение водоцементного отношения или добавление наполнителей часто затрудняет создание упорядоченной площади пор [53]. Более низкое содержание воды помогает FC захватить меньший размер пор, а также повышенную массовую плотность и прочность на сжатие [53]. Распределение пор является одним из важных микроскопических параметров, влияющих на прочность пенобетона. В целом пенобетон с более узким распределением пузырьков будет иметь более высокую прочность [118].

    Обзор Zhang et al. [26] обобщает влияние метода вспенивания на свойства пор, такие как размер, объем и форма, как показано в таблице 5. Наблюдается, что размеры пор в FC, произведенном механическим вспениванием, меньше, чем в химическом вспенивании. Связность пор зависит от плотности смеси, а не от способа вспенивания. Если плотность достигает уровня, при котором клей разделяет отдельные пузырьки, поры закрываются. В противном случае в ФК будут преобладать раскрывающиеся поровые структуры.

    Хилал и др. [106] использовали сканирующий электронный микроскоп (СЭМ) для характеристики размера и параметров формы пор, а затем изучали влияние различных добавок на прочностные характеристики. Исследование показало, что введение добавок заметно улучшало микроструктуру и структуру пор суспензии ТЦ по сравнению с обычной смесью. Хотя добавки увеличивают количество пор, более высокая прочность достигается за счет уменьшения размера пор и связанности, что предотвращает слияние пор и образование узкого распределения (см. рис. 2). Подтверждено, что прочность ФК зависит не только от улучшения пористой структуры, но и от улучшения микроструктуры цементного теста.

    Несмотря на то, что было задокументировано много литературы по FC из разных источников, стоит отметить, что нельзя пренебрегать исследованиями, касающимися повышения производительности с помощью микромеханизма FC, тогда как микроструктура означает его различные характеристики производительности. Макроскопический аспект, такой как тип бетона, наполнитель, добавка, пенообразователь и водоцементное отношение, широко изучался. Тем не менее, существует очень мало литературы по микроструктуре ТЭ, поэтому это может стать направлением для будущих усилий по улучшению характеристик ТЭ.

    2.4. Стабильность

    Стабильность — главная задача FC. Стабильность ФК можно определить как смесь с мелкой однородной закрытопористой структурой после затвердевания, без выделения и сегрегации [167]. Стабильность экспериментальной смеси можно оценить путем сравнения (i) расчетного и фактического количества, необходимого для достижения пластической плотности в пределах 50 кг/м 3 от проектного значения, и (ii) расчетного и фактического водоцементного отношения [38]. ]. Стабильная пенобетонная смесь зависит от многих факторов, а именно, плотности, пенообразователя, соотношения воды и цемента, добавки, заполнителя и добавки.

    2.4.1. Влияние плотности

    Характеристики стабильности FC были изучены Jones et al. [168], и они обнаружили, что бетоны с плотностью менее 500 кг/м 3 с большей вероятностью будут неустойчивыми. Кроме того, замена части портландцемента совместимым цементом на основе сульфоалюмината кальция (CSA) позволяет получить стабильную смесь низкой плотности. Другое исследование Джонса и Маккарти [138] показало, что неустойчивость ТЦ кажется почти неизбежной при очень низкой плотности (менее 300 кг/м 3 ).

    2.4.2. Влияние пенообразователя

    Более низкая концентрация пенообразователя оказывает положительное влияние на стабильность ФК [169]. В исследовании Ghorbani et al. [170] провели сравнительный анализ влияния намагниченной воды на стабильность пенообразователей на синтетической и белковой основе. Результаты показали, что магнитная вода положительно влияет на стабильность синтетической пены, но отрицательно влияет на стабильность белковой пены. Шива и др. [171] разработали зеленый пенообразователь из натуральных мыльных плодов. Его можно использовать в качестве заменителя синтетического пенообразователя, который соответствует существующему стандарту пенообразователя ASTM. Смесь с высоким пенообразованием имеет тенденцию быть неустойчивой после заливки, что сдерживает разработку и применение ТЭ низкой плотности. Экспериментальные исследования показали, что в некоторых смесях с высоким содержанием пены наблюдается сильная нестабильность [172]. Нестабильность легко обнаружить в образце смеси при пенообразовании более 0,61 м 3 , демонстрирующий увеличение нестабильности с увеличением содержания пены. Результаты экспериментов Adams et al. [173] подтвердили, что пенообразователь с 5 мас.% связующего может стабилизировать ТК при плотности менее 200 кг/м 3 . При этом структура пор белкового пенобетона более однородна, чем у пенобетона на основе ПАВ. Сан и др. [44] изучали стабильность и работоспособность ФК, приготовленных с использованием синтетических поверхностно-активных веществ, поверхностно-активных веществ на основе животного клея/крови и растительных поверхностно-активных веществ. Они заявили, что в качестве стабильной пены с наночастицами пена с синтетическими поверхностно-активными веществами демонстрирует более высокую стабильность и прочность на воздухе, чем те, которые наблюдаются в двух других пенах, что выгодно для улучшения характеристик FC.

    2.4.3. Влияние соотношения компонентов смеси

    Результаты исследования Ghorbani et al. [100] указали, что намагниченная вода может улучшить стабильность FC. При одинаковых пропорциях смеси образцы ФК с омагниченной водой показывают более высокую стабильность, чем контрольные образцы, приготовленные с обычной водопроводной водой, из-за более высокой степени гидратации. Сообщается, что консистенция базовой смеси, добавляемой к пене, оказывает заметное влияние на стабильность смеси. Поток спреда 45% в значении удобоукладываемости рекомендуется для получения смеси FC с хорошей стабильностью. Соотношение воды и твердого вещества, необходимое для получения стабильных смесей, увеличивается при добавлении летучей золы [168]. Сила сцепления между частицами и пузырьками в базовой смеси повысит жесткость смеси. Воздушная пена может повлиять на стабильность смеси в процессе смешивания, но этого можно избежать, используя более высокое водотвердое отношение [167]. Нестабильность объема цементного теста может страдать от большого соотношения воды и вяжущего [103]. Исследователи предложили различные методы оценки стабильности смеси FC: (i) плотность свежего пенобетона сравнивали с его заданной плотностью, и (ii) проверяли разницу между расчетным и фактическим водоцементным коэффициентом и поддерживали их близко к 2% [ 88].

    2.4.4. Влияние добавок и заполнителей

    Для бетона плотностью до 400 кг/м 3 100% портландцемент может образовывать стабильную смесь. Однако для бетона с плотностью менее 400 кг/м 3 требуется замена от 5% до 10% цемента совместимым цементом на основе алюмината кальция, чтобы получить стабильный ФК [168]. Конг и Бинг [174] отметили, что добавление микрокремнезема может улучшить теплоизоляционные характеристики и прочность и создать более равномерное распределение пор. Хотя использование негашеной извести помогает значительно повысить плотность и прочность ФК, наблюдается снижение стабильности пены.

    2.4.5. Влияние добавки

    Повышению прочности и предотвращению обрушения высокоэффективных ТЭ способствует добавление суперпластификатора и умеренное снижение водоцементного отношения [166]. В другом исследовании стабильность FC с использованием суперпластификатора была улучшена на 43%, когда водосвязующее отношение было задано менее 0,3 [168]. Цяо и др. [175] изучали применимость поверхностно-активных веществ Gemini в качестве новых воздухововлекающих агентов для FC. Результаты показали, что поверхностно-активные вещества Gemini обладают более стабильной воздухововлекающей способностью и более высокой поверхностной активностью по сравнению с современными стандартными поверхностно-активными веществами, используемыми в промышленности. Поверхностно-активные вещества Gemini, модифицированные сульфоновыми группами, обладают заметной стабильностью, воздухововлекающими характеристиками, поверхностной активностью и пенообразующими свойствами. Использование разбавителя воды для улучшения характеристик базовой смеси очень эффективно для повышения стабильности смеси FC. Введение пластификаторов повышает удобоукладываемость основной смеси и препятствует разрушению смеси с содержанием пены 63–80 %. Добавки в ФК создают меньшую нагрузку на поры, что облегчает протекание цементного раствора между соседними порами. Это способствует более равномерному распределению цементного раствора в порах, уменьшению слипания и увеличению размера пор [172].

    Некоторые наночастицы, такие как нанокремнезем или нанотрубки, всегда вводятся для модификации поверхности раздела между пузырьками и цементным тестом [176]. Эти наночастицы, собирающиеся на границе раздела газ-жидкость, помогают уменьшить площадь контакта между пузырьками и образуют плотную пленку частиц, препятствующую слиянию и диспропорционированию этих пузырьков. В то же время между поверхностью пены и непрерывной фазой будет образовываться трехмерная сетчатая структура, что выгодно для увеличения времени дренирования жидкой мембраны [177]. Схематическое изображение трехфазных пен после вспенивания, представленное Krämer et al. [178] показано на рис. 3.

    Исследователи сообщили, что хотя наночастицы не являются амфифильными, большинство из них поверхностно-активны [179]. Гидрофобность частиц рассматривается как ключевой фактор для оценки того, могут ли частицы адсорбироваться и оставаться вокруг пузырьков. Бинкс и Хорозов [179] модифицировали поверхность кремнезема силанольными группами и придали ей различную степень гидрофобности с целью исследования устойчивости пены. Результаты показали, что поверхностное содержание SiOH, варьирующееся от 30% до 50%, выгодно для получения пены с хорошей стабильностью и большой пенообразующей способностью. Также увеличение значения рН или уменьшение концентрации NaCl приводило к переходу пен из стабильного трехфазного состояния в нестабильное двухфазное состояние. Гонценбах и др. [180] использовали амфифилы с короткой цепью, такие как карбоновые кислоты, алкилгаллаты и алкиламины, для модификации поверхностей нанокремнезема и нанооксида алюминия. Таким образом, наночастицы могут быть адсорбированы на поверхности пузырьков химическими связями с образованием сверхстабильных пен низкой плотности [181].

    Однако пены, полученные путем объединения наночастиц с поверхностно-активными веществами, не всегда стабильны, вместо этого они иногда способствуют исчезновению пузырьков. Адсорбция наночастиц на поверхности пузырьков ускорит скорость просачивания жидкой пленки. Соединение пленок жидкости и пузырьков приводит к взрыву пузырьков. Конечно, стабильность пены в этой ситуации можно улучшить за счет использования подходящих наночастиц и поверхностно-активных веществ [182]. Танг и др. [183] ​​указали, что гидрофильные частицы кремнезема в сочетании с додецилсульфатом натрия (SDS) в FC проявляют положительный эффект стабилизации пены, тогда как добавление нанокремнезема приводит к уменьшению размера пузырьков. В другом исследовании Аларгова и соавт. [184] сообщили, что стабильность пен, полученных при комбинированном использовании SDS и частиц брускового полимера, ниже, чем у пен, стабилизированных одной частицей. В другом исследовании Binks et al. [185] выявили, что стабильность пузырьков, образованных смешанной системой SiO 2 и бромид цетилтриметиламмония (ЦТАБ) был значительно выше, чем в системе с одним ЦТАБ, но пенообразование было несколько слабее. Это связано с тем, что некоторое количество ЦТАБ адсорбируется на поверхности наночастиц, что увеличивает степень гидрофобности нанокремнезема. Стабильность пенной системы повысилась, но при этом снизилась пенообразующая способность в результате снижения концентрации пенообразователя в растворе.

    2.5. Расширение

    Несмотря на то, что FC широко используется в ненесущих компонентах, его применение в конструктивных элементах по-прежнему ограничено из-за проблем с его прочностью. Сообщается, что недостаточная прочность FC в основном связана с неравномерным распределением размера внутренних пор. Под действием нагрузок легко привести к концентрации напряжений в мелких порах, что приведет к разрушению ТЭ. Хорошо известно влияние распределения пор по размерам и равномерности распределения пор на свойства пенобетона [115, 118]. Таким образом, необходимо минимизировать коалесценцию пузырьков и увеличить количество мелких пор и закрытых пор в пенобетоне.

    Исследователи предпринимали различные попытки усилить FC. В настоящее время добавление волокон является наиболее часто используемым методом улучшения механических свойств ТЭ [73, 74]. Исследование Falliano et al. [92] заявили, что 0,7% волокон, смешанных с FC, по-видимому, не улучшали заметно механическую прочность по сравнению с эталонным образцом без волокон. Отмечено, что прочность на изгиб значительно улучшилась при увеличении содержания волокна до 5,0%; однако не было зафиксировано явного улучшения прочности на сжатие. В частности, повышение прочности на изгиб в основном зависит от плотности в сухом состоянии и в меньшей степени зависит от условий отверждения. Давуд и Хамад [75] изучали эффект армирования стекловолокном (GF), полипропиленовым волокном (PPF) и гибридным волокном (GF + PPF) на характеристики ударной вязкости высокоэффективного легкого пенобетона (HPLWFC). Результаты показали, что использование стекловолокна увеличивает прочность на сжатие, в то время как добавление полипропиленового волокна снижает прочность на сжатие HPLWFC. Наибольший прирост прочности на сжатие ВПЛВТЭ наблюдается у экспериментальных видов с 0,4 % стекловолокна и 0,6 % полипропиленового волокна. Экспериментальные результаты Hajimohammadi et al. [105] подтвердили, что использование ксантановой камеди (XG) в качестве загустителя значительно влияет на вязкость раствора пены и конденсирует жидкую пленку вокруг пены. Дренаж и разрушение материалов для предварительного вспенивания могут быть значительно уменьшены при увеличении концентрации XG, что заметно улучшает предсказуемость и управляемость химического вспенивания. Модифицированные XG образцы имеют меньшее и более узкое распределение пор по размерам по сравнению с контрольным образцом, что положительно влияет на теплопроводность и прочность на сжатие образцов.

    Контроль размера пузырьков влияет на повышение производительности FC. Се и др. [104] указали, что улучшение метода порообразования, уменьшение размера пузырьков и увеличение нанопор в пенобетоне стали ключевыми вопросами для исследования FC. Для той же плотности пористость постепенно уменьшалась с увеличением содержания бентонитовой пульпы, что приводило к увеличению толщины стенок между порами. Размер пор уменьшался с увеличением содержания бентонитовой суспензии от 0% до 50%, средний размер пор значительно уменьшался, а распределение пор по размерам было более узким. Газ в маленьком пузыре попадает в большой пузырек через пленку жидкости, чтобы сбалансировать давление, так что пузырек распределяется в большом диапазоне. Более толстая водяная смазочная пленка между пузырьками ограничивает газообмен смеси с низкой дозировкой сборного пенопласта, что приводит к однородному размеру пор.

    Джонс и др. [168] сообщили, что нестабильное поведение пузырьков вызывает неравномерное распределение пор по размерам в FC. Совместное действие выталкивающей силы, силы тяжести, давления раствора и внутреннего давления приводит к нестабильности пузырьков, когда пузырьки попадают в цементное тесто. Чем меньше пузырь, тем заметнее нестабильность. Это нестабильное состояние в пузырьках приводит к непрерывному слиянию и росту пузырьков, что увеличивает размер пузырьков. Слияние пузырьков становится более очевидным при использовании большего количества пены. Также из-за малого количества пульпы давление пульпы на пузырек становится меньше и пузырек всплывает вверх, что приводит к оседанию на поверхности и схлопыванию ТК.

    В настоящее время новым способом дальнейшего улучшения характеристик ТЭ является введение трехфазных пен, которые помогают ослабить нестабильность за счет снижения высокой межфазной энергии и свободной энергии системы [176]. Исследование She et al. [186] использовали сочетание органических поверхностно-активных веществ и наночастиц для изменения границы раздела газ-жидкость, чтобы получить сверхстабильные пены для производства FC. Эффект разделения между пузырьками и свежим цементным тестом возникает, когда пузырьки добавляются в цементный тест. Эти пузырьки будут уравновешиваться под действием различных сил, состоящих из силы, ограничивающей пузырек ( F C ), гравитация ( F D ), внутреннее пузырьковое давление ( P I 881). а также плавучесть пузырьков ( F b ), вызванная эффектом поверхностно-активного вещества, как показано на рисунке 4. Ф с ; поэтому эти пузырьки легко растут и всплывают в верхнюю часть суспензии под действием F b . Нежелательное соответствие между силами, действующими на пузырьки, и ранней прочностью ограничивает движение пузырьков, что приводит к расслоению и неравномерной плотности пенобетона.

    Наоборот, эта ситуация улучшилась, когда поверхности пузырьков были модифицированы добавлением частиц нанокремнезема (НС), а пленки были усилены гидроксипропилметилцеллюлозой (ГПМЦ). Эти частицы НС увеличивают шероховатость поверхности и сопротивление трения движущихся в цементном тесте пузырьков, а свободная энергия на поверхности пузырьков поглощается частицами НС.

    Кроме того, большое внимание привлекло использование углеродных нанотрубок в качестве армирующих компонентов в материалах на основе цемента. Модификация структуры и характеристик ТЭ может быть реализована путем диспергирования многослойных углеродных нанотрубок в пенобетоне [187]. Наиболее существенные улучшения в ТЭ на основе углеродных нанотрубок наблюдаются в механических свойствах [188, 189]. Добавление углеродных нанотрубок не только улучшает характеристики ТЭ, но и обеспечивает однородность размера пор. Диспергирование углеродных нанотрубок приводит к тонкой структуре цементного теста, в результате чего получаются плотные бетоны [188, 189].]. Более однородное и плотное цементное тесто достигается за счет эффекта кристаллизации гидроксида кальция. При этом наблюдается более высокое количество C-S-H при гидратации бетона, поскольку углеродные нанотрубки играют роль в образовании фаз C-S-H [190]. Упрочнение также обеспечивается даже небольшим количеством углеродных нанотрубок 0,1% по весу относительно содержания связующего. Также сообщается, что использование углеродных нанотрубок с низким массовым содержанием в неавтоклавном бетоне снижает его теплопроводность и улучшает механические свойства [189].].

    Кремер и др. [176, 178, 191–193] провели серию исследований по упрочнению ТЭ введением наночастиц (нанокремнезем, углеродные нанотрубки) с целью стабилизации пен. Результаты показали, что механические свойства и структура пузырьков в целом улучшаются по сравнению с обычным пенобетоном. Инкапсулирующиеся на поверхности пены наночастицы участвуют в гидратации цемента, тем самым увеличивая продукты гидратации и повышая прочность клеточных стенок ФК.

    Недавно был предложен новый метод добавления пуццолановых активных наноматериалов в бетон для армирования [193]. Полученные пенобетоны имеют более высокую прочность на сжатие, чем те, которые наблюдаются в промышленных FC, без необходимости дальнейшей оптимизации или других средств улучшения. Эти бетоны демонстрируют возможности обеспечения свойств, сравнимых с промышленными легкими бетонами в будущем. Для пенобетонов характерно специфическое образование продуктов гидратации и раковинообразная структура пор. Кроме того, благодаря использованию трехфазных пеноматериалов удалось контролировать распределение пор по размерам в FC.

    Результаты работы [176] подтвердили, что уменьшение размера пор можно наблюдать при использовании трехфазных пен, но более широкое распределение пор по размерам наблюдалось при использовании нанотрубок. Также сообщается, что трехфазные пены в сочетании с другими наноматериалами или полученные подходы могут дополнительно улучшить свойства и характеристики ТЭ.

    3. Практическое применение ТЭ в тоннелях и подземных сооружениях
    3.1. Значение и преимущества

    FC постепенно стали рассматривать как обновленный материал для решения проблем, возникающих в туннелях и подземных проектах. FC имеет хорошие механические свойства по сравнению с обычным бетоном (OC), и некоторые сравнения представлены в таблице 6. Ожидается, что он частично или полностью заменит обычный бетон в подземных сооружениях, обеспечивая экономические, социальные и экологические преимущества. преимущества.

    3.1.1. Отличные свойства

    Широкий выбор свойств FC применим в различных ситуациях. Низкая плотность (обычно от 300 до 1800 кг/м 3 ) помогает уменьшить статической нагрузки, не создавая боковой нагрузки [26, 28]. Большое количество закрытых мелких пор, содержащихся в ФК, обусловливают его выдающуюся огнестойкость [206], низкую теплопроводность и звукоизоляционные свойства [174, 207], которые отсутствуют у ОК. ТЭ с плотностью от 300 до 1200 кг/м 3 обычно имеет значение теплопроводности 0,08–0,3 Вт/мК [36, 208]. Благодаря малому весу и низкому модулю упругости конструкции, армированные FC, обладают значительной сейсмостойкостью, эффективно поглощая и рассеивая ударную энергию при воздействии сейсмической нагрузки. Свойства способствуют применению FC в туннелях, а подземные работы могут быть выявлены по (1) низкому собственному весу, (2) свободному течению и самовыравниванию, (3) распределению нагрузки, (4) изоляционной способности, (5) надежный контроль качества и (6) устойчивость к замораживанию и оттаиванию.

    3.1.2. Экологичность

    Желательно использовать переработанные отходы, такие как летучая зола и переработанное стекло, в производстве ТЭ, чтобы защитить окружающую среду [209]. Основным сырьем, необходимым для ТЭ, являются цемент и пенообразователи. Большинство пенообразователей представляют собой практически нейтральные поверхностно-активные вещества со значительной биоразлагаемостью, в которых обычно не содержится бензол и формальдегид. Таким образом, почва, вода и воздух подвергаются незначительному неблагоприятному воздействию [210–212], тогда как FC может свести к минимуму нарушение природной среды на этапе строительства.

    3.1.3. Экономия затрат и времени

    Это может быть экономически выгодным решением, особенно в приложениях с большими объемами. Превосходная текучесть и самовыравнивание означают меньшее потребление энергии и перемещение рабочей силы при использовании труб для перекачки [213]. С целью обеспечения прочности ТЭ в качестве наполнителей может быть использовано большое количество промышленных отходов [214]. Таким образом, более низкие инвестиции в применение FC обычно объясняются индивидуальной конструкцией смеси, быстрой установкой оборудования и снижением затрат на техническое обслуживание.

    3.1.4. Окупаемое сооружение

    Насосная ТК может быть реализована путем оснащения пеносмесителем, силовым насосом и подающим трубопроводом при рабочей нагрузке 200–300 м 3 /сут в пределах теоретической высоты по вертикали и горизонтального расстояния 200 м и 600 м соответственно [215]. Из-за высокой текучести ТЦ обычно не требуется значительной мощности перекачки, а массовое производство и размещение всегда основаны на непрерывной работе, что значительно повышает эффективность работы. Кроме того, необходимы лишь ограниченные поставки сырья, поскольку пенопласт действует как самый большой объемный вкладчик в FC.

    3.2. Новое применение в строительстве туннелей
    3.2.1. Тепловой материал

    В настоящее время тепловые меры для туннелей для холодных регионов в основном включают электрообогрев, теплоизоляционную дверь и незамерзающий теплоизоляционный слой (т. е. теплоизоляционные материалы, укладываемые на конструкцию облицовки) [216–218]. Однако электрообогрев требует много энергоресурсов для обеспечения тепловой эффективности, что несколько отклоняется от все более требовательных требований с точки зрения энергосбережения конструкций. Двери с теплоизоляцией не подходят для туннелей с большой интенсивностью движения, что приводит к значительным потерям тепла из-за непрекращающегося открывания и закрывания [219]., 220]. Следовательно, использование FC в качестве облицовочной конструкции и изоляционного материала позволяет упростить процесс строительства и снизить материальные затраты.

    Юань [221] сообщил о конкретном случае использования FC в качестве изоляционного материала в туннеле в Тибете, альпийском регионе Китая, где период замерзания с минимальной температурой -27,7°C длится восемь месяцев каждый год. В таблице 7 представлена ​​оптимальная пропорция смеси FC, используемая в исследовании. Температура в измеренных точках без изоляционного слоя значительно различается по сравнению с местом с изоляционным слоем. Результаты показали, что изменение температуры и минимальная температура в этих двух местах составляют 4,5°C, 2°C и 1°C, 3°C соответственно. Выводы о влиянии циклов замораживания-оттаивания на характеристики ТЭ [44, 222] будут полезны для дальнейшего улучшения и оптимизации долговечности ТЭ, используемых в качестве изоляционных материалов.

    3.2.2. Сейсмостойкий слой

    Сейсмостойкий слой обычно размещают между скалой и обшивкой туннеля, чтобы передать часть давления горной массы в период строительства, чтобы избежать повреждения облицовки при землетрясении [223–225]. Значительная несущая способность и деформационная способность делают его идеальным сейсмостойким материалом для строительства тоннелей. Как показано в таблице 8, Zhao et al. [226] разработали новый сейсмостойкий материал FC, а затем применили его в туннеле Gonggala в Китае. Результаты численного анализа показали, что этот новый материал на основе FC значительно снижает напряжения и зоны пластичности в тоннельной обсадке. Между тем, исследование, проведенное Huang et al. [227] показали, что использование FC в качестве сейсмостойкого материала превосходит резину по результатам испытаний на долговечность.

    3.2.3. Элемент конструкции

    Деформация ползучести в туннелях, особенно глубоких, будет продолжаться после установки вторичной обоймы [228–231], что легко приводит к повреждению или разрушению конструкции. Простое увеличение толщины вторичной облицовки не может полностью контролировать деформацию ползучести в массиве горных пород. Элементы на основе FC, встроенные между основной опорой и вторичной обшивкой, могут значительно выдерживать деформационное давление, поэтому высокая сжимаемость и пластичность FC могут помочь устранить общее повреждение или отказ. ТК с пределом прочности при сжатии 0,4–0,7 МПа, пористостью 68%, плотностью 800 кг/м 3 [232] был принят в систему хвостовика туннеля Tiefengshan № 2, чтобы противостоять давлению набухания, вызванному гипсовой солью. С момента успешного ввода в эксплуатацию в сентябре 2005 года туннель работает нормально, повреждений не возникло.

    Ван и др. [233] изучали долгосрочные характеристики элемента хвостовика на основе FC по сравнению с обычным туннелем из мягких пород с большим пролетом, результаты показали, что после ползучести в течение 100 лет осадка свода и горизонтальная конвергенция уменьшились на 61% и 45% соответственно. , а зона пластичности во вторичном лейнере явно уменьшилась. Ву и др. [234] разработали специальную систему податливой крепи в сочетании с новым типом FC. Эта недавно разработанная система была встроена между основной опорой и вторичной обшивкой. Результаты подтвердили, что пластическая зона и деформации на кровле и бортах вторичной обшивки были значительно уменьшены в результате амортизирующего эффекта по сравнению с жесткой системой крепления.

    3.2.4. Обратная засыпка и армирование

    Таблица 9 обобщает практическое применение FC, используемого в качестве селективного засыпного материала в автодорожных тоннелях. В частности, случаи заполнения в основном включают засыпку пространства или полости, засыпку открытых и вспомогательных туннелей, объемную засыпку, такую ​​как засыпка вышедшего из употребления туннеля, обработка обрушения и т. д. Некоторые типичные области применения описаны ниже.

    Kontoe [240] сообщил о случае обратной засыпки при ремонте двойного туннеля шоссе Болу в Турции (рис. 5(a)). Туннель сильно пострадал во время 1999 Дюздже, и большое количество FC было временно засыпано для стабилизации забоя туннеля во время работ по реконструкции. Отличные приоритеты по сравнению с ОК обуславливают применение ФК при обработке обрушения туннеля. Контролируемая плотность и прочность, а также хорошая ликвидность позволяют полностью заполнить, а затем насытить разрушенную полость, тем самым консолидируя разрушенное тело. На рис. 5(б) и 5(в) представлены фотографии применения ФК для армирования тела обрушения длиной 20 м и глубиной 9,6 м в туннеле Сима, где горная масса была разбита и срезана под углом [241]. Последующие отзывы со строительной площадки подтвердили эффективность этого материала для обработки.

    3.2.5. Снижение статической нагрузки

    На рис. 6 показано применение FC для снижения нагрузки при подъеме грунта до требуемого уровня, что обычно используется в системе метрополитена. В последнее время производство ТЭ в Европе, Северной Америке, Японии, Корее, Китае и Юго-Восточной Азии стало отработанными технологиями. Другие формы использования FC включают выборочное заполнение и армирование для безопасного строительства.

    3.3. Новое применение в подземной технике
    3.3.1. Подземная угольная шахта, проезжая часть

    Применение FC в угольных шахтах в основном сводится к трем аспектам: материалы для обратной засыпки, система поддержки и блокировка воды/вредного газа, которые представлены ниже:

    (1) Материал для обратной засыпки . Еще в 1992 году Горнорудное управление США выпустило программу для использования FC с плотностью 720 кг/м 3 для обратной засыпки заброшенных шахт, а целью полевого строительства была шахта № 22 в округе Логан, Западная Вирджиния [242]. И самое крупное в мире разовое использование FC в шахте на сегодняшний день — это работы по стабилизации каменных шахт Combe Down Stone Mines недалеко от Бата в Великобритании, на которых в конечном итоге было использовано около 400 000 м 9 . 0299 3 FC при плотности и прочности 650 кг/м 3 и 1 МПа соответственно (рис. 7) [243].

    (2) Система поддержки . Тан и др. [244] предложили составную опорную систему, содержащую демпфирующий слой FC, в связи с большими деформациями в мягких породах выработки угольной шахты. Результаты показали, что усадка U-образной стали значительно уменьшилась, поскольку FC поглощает большую часть генерируемой деформации (рис. 8).

    (3) Блокировка воды/газа . Воздухонепроницаемые стены в угольных шахтах считаются эффективным методом предотвращения самовозгорания остаточного угля, вызванного утечкой воздуха. В исследовании Wen et al. [245] был разработан новый тип FC для создания стенки, предотвращающей возможную утечку воздуха. Прочность на сжатие стенки ТЦ за 28 сут достигла 5 МПа, при этом остаточных трещин не наблюдалось; таким образом, он эффективно подавлял утечку воздуха в каплю (рис. 9).).

    3.3.2. Общественные трубопроводы и сооружения

    На практике использование материалов FC для обратной засыпки муниципальных трубопроводов помогает контролировать осадку после строительства, вызванную плохим уплотнением. В Японии муниципальные трубопроводы, такие как газопроводы, всегда заполнены FC, чтобы предотвратить внешние повреждения, особенно в районах, где часто происходят землетрясения [246]. Ожидается, что

    FC будет использоваться в гидравлических туннелях для защиты от повреждений во время землетрясений. Даудинг и Розен [247] подтвердили ряд случаев сейсмического повреждения гидравлических туннелей в США путем статистического анализа десятков конкретных туннелей. Подобные сейсмические опасности были также зарегистрированы в Японии в течение 19 века.Землетрясение 95 Осака-Кобе ( M s  = 7,2), в результате которого были сильно повреждены водопроводные и канализационные системы в Ханшине и прилегающих районах. Системы водоснабжения в Кобе были даже полностью разрушены [248, 249]. В настоящее время сделано много вкладов в использование FC в качестве антисейсмического материала в гидравлических туннелях. Проект водного туннеля Порт-Манн, расположенный в Ванкувере, Канада, был построен общей протяженностью 6000  м 3 FC для удовлетворения требований сейсмической обратной засыпки для обеспечения 100-летней надежности [250].

    4. Мысли и дальнейшая работа по популяризации FC
    4.1. Новое направление для повышения производительности FC

    Несмотря на то, что было проведено множество исследований, посвященных макроскопическим свойствам FC, таким как теплопроводность, механические свойства, водопоглощение и т. д., исследования усадки при высыхании, контроля размера пузырьков, стабильности , и характеристика структуры пор все еще недостаточны.

    Горбани и др. [110] использовали сканирующий электронный микроскоп (СЭМ) для изучения микроструктуры ТЭ. Результаты показали, что микроструктура ТЭ заметно улучшилась при использовании намагниченной воды вместо обычной водопроводной воды. Структура ТЭ с омагниченной водой имеет меньшую пористость и большую плотность, чем у обычной водопроводной воды. Использование омагниченной воды в ТЭ повышает его стабильность, прочность на сжатие и растяжение, а также снижает водопоглощение.

    Микроструктура ТЭ, наполненного микрокремнеземом, была изучена Reisi et al. [251]. СЭМ и рентгеновская дифракция показали, что реакция между микрокремнеземом и свободным гидроксидом кальция в гидратированном цементе приводит к образованию гидратированного силиката кальция. Его твердость и долговечность выше, чем у гидроксида кальция, что снижает риск воздействия сульфатов на микрокремнезем FC. Следовательно, гидратированный силикат кальция дает гомогенный ТК с лучшим распределением твердых частиц и пор, что приводит к более высокой прочности на сжатие по сравнению с ТК без микрокремнезема.

    Результаты рентгеновской микроКТ, представленные Chung et al. [252] подтвердили, что форма и размер пор, а также локальная плотность твердых частиц оказывают заметное влияние на производительность и характер разрушения ТЭ, что имеет важное значение для производства высокоэффективных ТЭ. Кроме того, Zhang и Wang [128] подтвердили, что размер пор заметно влияет на прочность на сжатие армированного стекловолокном FC, особенно при высокой пористости. Форма пор остается относительно постоянной в результате изменения содержания пены и плотности, что не оказывает большого влияния на механические свойства ФК.

    Существует относительно мало исследований микроструктуры FC, таких как механизм усадки, прогнозирование усадки, улучшение прочности и т. д. Безусловно, все вышеупомянутые исследования полезны для глубокого понимания вопросов долговечности; поэтому необходимо тщательно изучить связь микроструктуры и макрохарактеристик FC для лучшего повышения его производительности.

    4.2. Техническое ограничение

    Примечательно, что пропорции смеси FC всегда были технической проблемой и одной из горячих точек исследований. До сих пор нет четко определенных методов определения пропорции смеси, несмотря на то, что можно использовать некоторые экспериментальные методы и методы, основанные на ошибках. Недавно Тан и соавт. [8] предложили уравнение для определения пропорции смеси: где ρ D — сухая плотность спроектированного FC (кг/м 3 ), S A — это эмпиричный коэффициент, M . цемента (кг/м 3 ), V 1 и V 2 — объем цементного теста и пены соответственно, ρ c — плотности цемента и воды , соответственно, М C и является цементом и водой, соответственно, K является коэффициентом, M y и ρ и ρ и ρ 9 и . M p – масса пенообразователя, а α – степень разбавления.

    Практически качество воды, цемента, извести и других заполнителей во всем мире характеризуется уникальными свойствами, а технический уровень подготовки волокна сильно различается. На оптимальную пропорцию смеси FC также будут влиять региональные условия [253]. Следовательно, необходимо определить наилучшую пропорцию смешивания в рамках различных региональных тестов, избегая прямого использования существующих схем пропорций смешивания. Эта проблема может быть одним из важных факторов, ограничивающих мировое применение ТЭ в строительстве тоннелей [254–256].

    Разработка более дешевых пенообразователей и генераторов также является неотложной задачей для продвижения практичности и более широкого применения FC. Следует изучить совместимость между пенообразователями и различными добавками для усиления ФК. Между тем, для снижения водопотребности и усадки требуется углубленное изучение совместимости химических добавок. Трудности, возникающие при производстве ТЦ, такие как смешивание, транспортировка и перекачка, также требуют решения, поскольку они оказывают существенное влияние на свежесть и свойства ТЦ [64].

    4.3. Государственная поддержка

    Рассматриваемый как экологически чистый строительный материал, FC соответствует растущим требованиям устойчивого строительства в странах мира. Быстрое развитие инфраструктуры увеличило спрос на различные новые материалы для защиты окружающей среды, в которых FC играет ключевую роль. При государственной поддержке, будь то политика или экономический аспект, будет получено больше научных результатов от университетов, научно-исследовательских институтов и предприятий, что способствует созданию и реформированию соответствующих промышленных систем, тем самым облегчая проблемы потребителей.

    4.4. Другие соображения

    Отсутствие полных производственных данных и опыта строительства затрудняет формирование полных строительных систем. Таким образом, установление надежных процедур проектирования и строительства для использования ТЭ помогает преодолеть трудности строительства. Кроме того, необходимо своевременно внедрять соответствующие спецификации, нормы и стандарты, чтобы стандартизировать процессы проектирования и строительства ТЭ.

    5. Выводы

    На основании проведенного обзора было замечено, что большинство исследований FC было проведено для оценки его свойств, а не свойств пены, что влияет на прочность и улучшение качества пенного материала. Согласно выводам, предоставленным исследователями, из обширного обзора литературы были сделаны следующие выводы: (1) Для повышения производительности и популяризации ТЭ были разработаны соответствующие свойства, и некоторые аспекты были предложены в качестве ограничений для более широкого применения ТЭ, таких как усадка при высыхании, проблема прочности, стабильности, улучшения и долговечности. (2) Стабильность пены является важным аспектом, который значительно влияет на прочность FC. При производстве стабильного ТК необходимо учитывать множество факторов, таких как способ приготовления пены, тип пенообразователя, точность смеси, тип используемых поверхностно-активных веществ и добавок, использование наночастиц и состав смеси и т. д. (3) Доступно очень мало исследований долговечности FC. На прочностные свойства ФК в основном влияет отношение связанных пор к общим порам. FC с равномерно распределенными закрытыми круглыми воздушными порами обладает хорошими термическими и механическими свойствами. (4) Текущие исследования в основном сосредоточены на микроскопических характеристиках FC и влиянии нескольких факторов на физические, механические и функциональные характеристики. Тем не менее, в очень ограниченном количестве публикаций делается акцент на характеристике системной микроструктуры FC. (5) Использование трехфазных пен вместо влажных пен на основе поверхностно-активных веществ или белков и воды для улучшения характеристик FC вновь привлекло внимание, поскольку включение трехфазных пен в цементном тесте выгодно стабилизировать поры и контролировать распределение пор по размерам.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Благодарности

    Финансовая поддержка Национального фонда естественных наук Китая (№ 51678363), Шэньчжэньский научно-технический проект (№ JCYJ201505250

  • 052), Подземная инженерия (Университет Тунцзи) (№ KLETJGE-B0905), Социальный проект Развитие Департамента науки и технологий провинции Шэньси (№ 2018SF-382, № 2018SF-378) и фондов фундаментальных исследований Центрального университета, CHD (№ 300102219)711, 300102219716 и 300102219723) искренне признателен.

    Ссылки
    1. E.K.K. Nambiar and K. Ramamurthy, «Влияние типа наполнителя на свойства пенобетона», Cement and Concrete Composites , vol. 28, нет. 5, стр. 475–480, 2006.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    2. Ю. Ван, С. Х. Чжан, Д. Т. Ниу, Л. Су и Д. М. Луо, «Прочность и распределение ионов хлорида, обеспечиваемые заполнителем кораллового заполнителя, армированного базальтовым волокном», Строительство и строительные материалы , том. 234, ID статьи 117390, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    3. Дж. Нараянан и К. Рамамурти, «Идентификация ускорителя схватывания для повышения производительности производства пенобетонных блоков», Construction and Building Materials , vol. 37, стр. 144–152, 2012 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    4. М. Р. Джонс, К. Озлутас и Л. Чжэн, «Большой объем пенобетона с летучей золой сверхнизкой плотности», Журнал исследований бетона , том. 69, нет. 22, стр. 1146–1156, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    5. Ş. Килинкарслан, М. Давраз и М. Акча, «Влияние пемзы в качестве заполнителя на механические и тепловые свойства пенобетона», Arabian Journal of Geosciences , vol. 11, нет. 11, ID статьи 289, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    6. Д. Т. Ниу, Л. Чжан, Ф. Цян, Б. Вен и Д. М. Луо, «Критические условия и прогнозирование срока службы арматуры коррозии в бетоне с коралловым заполнителем», Строительство и строительные материалы , том. 238, ID статьи 117685, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    7. Д. Фаллиано, Д. Д. Доменико, Г. Риччарди и Э. Гульяндоло, «Экспериментальное исследование прочности пенобетона на сжатие: влияние условий отверждения, типа цемента, пенообразователя и плотности в сухом состоянии», Строительство и строительные материалы , вып. 2018. Т. 165. С. 735–749.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    8. XJ Tan, WZ Chen, JH Wang et al., «Влияние высокой температуры на остаточные физико-механические свойства пенобетона», Construction and Building Materials , vol. 135, стр. 203–211, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    9. Т. Лю, Ю. Дж. Чжун, З. Л. Хань и В. Сюй, «Характеристики деформации и контрмеры для туннеля в сложных геологических условиях на северо-западе Китая», Достижения в области гражданского строительства , том. 2020 г., идентификатор статьи 1694821, 16 страниц, 2020 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    10. Y. Wei, W. Guo и Q. Zhang, «Модель для прогнозирования испарения с поверхности свежего бетона на этапе пластической обработки», Drying Technology , vol. 37, нет. 11, стр. 12–23, 2019 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    11. М. А. Отман и Ю. К. Ван, «Тепловые свойства легкого пенобетона при повышенных температурах», Строительство и строительные материалы , том. 25, стр. 705–716, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    12. А. А. Саяди, Дж. В. Тапиа, Т. Р. Нейцерт и Г. К. Клифтон, «Влияние частиц пенополистирола (EPS) на огнестойкость, теплопроводность и прочность на сжатие пенобетона», Construction and Building Materials , vol. . 11, стр. 716–724, 2016.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    13. С. Тада, «Конструкция материалов из газобетона — оптимальная конструкция», Материалы и конструкции , том. 19, нет. 1, стр. 21–26, 1986.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    14. Ким Х.К., Чон Дж.Х. и Ли Х.К. Удобоукладываемость, механические, акустические и тепловые свойства бетона с легким заполнителем с большим объемом вовлеченного воздуха, Construction and Building Materials , vol. 29, стр. 193–200, 2012.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    15. Р. К. Валоре, «Физические свойства ячеистого бетона, часть 2», ACI Journal Proceedings , vol. 50, нет. 6, стр. 817–836, 1954.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    16. Z. M. Huang, T. S. Zhang, Z. Y. Wen, «Состав и характеристика сверхлегких пенобетонов на основе портландцемента», Construction and Building Materials , том. 79, стр. 390–396, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    17. М. Деки, М. Друса, К. Згутова, М. Блашко, М. Хайек и В. Шерфель, «Пенобетон как новый материал в дорожных конструкциях», Procedia Engineering , vol. 161, стр. 428–433, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    18. М. Кадела и М. Козловски, «Слой пенобетона как основание промышленного бетонного пола», Procedia Engineering , vol. 161, стр. 468–476, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    19. Zhang Zhang, JL Provis, A. Reid и H. Wang, «Механические, теплоизоляционные, теплоизоляционные и звукопоглощающие свойства геополимерного пенобетона», Cement and Concrete Composites , vol. 62, стр. 97–105, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    20. Тарасов А.С., Кирсли Э.П., Коломацкий А.С., Мостерт Х.Ф. Тепловыделение при гидратации цемента в пенобетоне.0231 Журнал исследований бетона , том. 62, нет. 12, стр. 895–906, 2010.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    21. Y. Wei, J. Huang, and S. Liang, «Измерение и моделирование ползучести бетона с учетом влияния относительной влажности», Mechanics of Time-depending Materials , vol. 24, нет. 1, стр. 1–17, 2020 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    22. Ю. Ю. Ли, Ю. М. Сун, Дж. Л. Цю, Т. Лю, Л. Ян и Х. Д. Ше, «Характеристики влагопоглощения и теплоизоляционные характеристики теплоизоляционных материалов для туннелей в холодных регионах», Строительство и строительные материалы , том. 237, ID статьи 117765, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    23. X. Z. Li, C. Z. Qi и PC Zhang, «Микро-макро модель разрушения хрупких твердых тел при усталостной усталости при сжатии», International Journal of Fatigue , vol. 130, Статья ID 105278, с. 14, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    24. З. К. Чжан и Дж. Л. Ян, «Повышение безопасности выхода за пределы взлетно-посадочной полосы с помощью пенобетонной системы остановки самолета: экспериментальное исследование», Международный журнал ударопрочности , том. 20, нет. 5, стр. 448–463, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    25. П. Фаваретто, Г. Э. Н. Идальго, Ч. Х. Сампайо, Р. Д. А. Сильва и Р. Т. Лермен, «Характеристика и использование отходов строительства и сноса с юга Бразилии в производстве пенобетонных блоков», Прикладные науки , об. 7, нет. 10, стр. 1–15, 2017 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    26. Zhang Zhang, JL Provis, A. Reid и H. Wang, «Геополимерный пенобетон: новый материал для устойчивого строительства», Construction and Building Materials , vol. 56, стр. 113–127, 2014.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    27. P. Prabha, G. S. Palani, N. Lakshmanan, and R. Senthil, «Поведение композитной панели из стали и пенобетона при поперечной нагрузке в плоскости», Journal of Construction Steel Research , том. 139, стр. 437–448, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    28. Ю. Хулимка, Р. Крживон и А. Енджеевска, «Лабораторные испытания пенобетонных плит, армированных композитной сеткой», Procedia Engineering , vol. 193, стр. 337–344, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    29. J. L. Qiu, YQ. Lu, J. X. Lai, C. X. Guo, and K. Wang, «Исследование отказоустойчивости лёссового тоннеля метрополитена в местной водной среде с высоким давлением», Анализ технических отказов , vol. 112, нет. 4, 2020.

      Посмотреть по адресу:

      Google Scholar

    30. Дж. З. Пей, Б. К. Чжоу и Л. Лю, «Электронная дорога: крупнейший источник энергии будущего?» Прикладная энергия , том. 241, стр. 174–183, 2019.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    31. Л. С. Ван, Э. Л. Ма, Х. Ли и др., «Технологии осадки и обработки туннеля для лёссового метро в Сиане», Достижения в области гражданского строительства , том. 2020, ID статьи 1854813, 16 страниц, 2020.

      Посмотреть по адресу:

      Google Scholar

    32. X.G. Yu, G.H. Xing, and Z.Q. Chang, «Поведение изгиба железобетонных балок, усиленных приповерхностными алюминиевыми сплавами 7075, установленными стержней», Journal of Building Engineering , vol. 28, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    33. Т. Чжан, Д. Т. Ниу и К. Ронг, «Бетонные цилиндры из кораллового заполнителя, ограниченного стеклопластиком: экспериментальный и теоретический анализ», Строительство и строительные материалы , том. 218, стр. 206–213, 2019.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    34. Ю. К. Чжэн, Ю. Х. Чжан, Л. С. Ван, К. Ван и Т. Лю, «Механизм механического усиления сталефибробетона и его применение в туннелях», Достижения в области гражданского строительства , том. 2020, ID статьи 3479475, 16 страниц, 2020.

      Посмотреть по адресу:

      Google Scholar

    35. К. Х. Ян, К. Х. Ли, Дж. К. Сонг и М. Х. Гонг, «Свойства и устойчивость щелочно-активированного шлакового пенобетона», Журнал чистого производства , том. 68, стр. 226–233, 2014.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    36. С. Вей, Ю. К. Чен, Ю. С. Чжан и М. Р. Джонс, «Характеристика и моделирование микроструктуры и тепловых свойств пенобетона», Строительство и строительные материалы, , том. 47, стр. 1278–1291, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    37. Амран Ю. Х. М., Фарзадния Н., Абанг А. А. А. Свойства и применение пенобетона: обзор, стр. 9.0231 Строительство и строительные материалы , том. 101, стр. 990–1005, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    38. K. Ramamurthy, KKK Nambiar и GIS Ranjani, «Классификация исследований свойств пенобетона», Cement and Concrete Composites , vol. 31, нет. 6, стр. 388–396, 2009 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    39. Ю. Чжэн, Дж. Сюн, Т. Лю, С. Юэ и Дж. Цю, «Выполнение глубоких раскопок в сильно проницаемых песчано-гравийных слоях Ланьчжоу», Arabian Journal of Geosciences , vol. 13, нет. 16, с. 12, 2020.

      Посмотреть по адресу:

      Google Scholar

    40. Х. Сун, К. П. Ван, П. Чжан, Ю. Дж. Чжун и С. Б. Юэ, «Пространственно-временные характеристики дорожно-транспортных происшествий в туннелях в Китае с 2001 г. по настоящее время», Достижения в области гражданского строительства , том. 2019 г., идентификатор статьи 4536414, 12 страниц, 2019 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    41. L. X. Wang, C. H. Li, J. L. Qiu, K. Wang, and T. Liu, «Обработка и влияние лёссового тоннеля метро в условиях окружающего давления и погружения в воду», Геожидкости , том. 2020, ID статьи 7868157, 15 страниц, 2020.

      Посмотреть по адресу:

      Google Scholar

    42. Тан X. Дж., Чен В. З., Лю Х. Ю., Чан А. Х. К., «Напряженно-деформационные характеристики пенобетона, подвергнутого воздействию больших деформаций. одноосная и трехосная сжимающая нагрузка», Journal of Materials in Civil Engineering , vol. 30, нет. 6, стр. 1–10, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    43. П. Дж. Тикальский, Дж. Посписил и В. Макдональд, «Метод оценки морозостойкости предварительно сформированного пеноячеистого бетона», Cement and Concrete Research , vol. 34, стр. 889–893, 2004.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    44. C. Sun, Y. Zhu, J. Guo, YM Zhang, and G. X. Sun, «Влияние типа пенообразователя на удобоукладываемость, усадку при высыхании, морозостойкость и распределение пор пенобетона», Строительство и строительные материалы , том. 186, стр. 833–839, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    45. С. Миндесс, Разработка состава и армирование бетона , Woodhead Publishing Limited, Кембридж, Великобритания, 2008 г. Противовзрывной эффект жертвуемой облицовки на пеноцементной основе для туннельных конструкций», Строительство и строительные материалы , том. 94, стр. 710–718, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    46. Х. Чой и С. Ма, «Оптимальная легкая вспененная растворная смесь, подходящая для дренажа туннелей, осуществляемого методом композитной облицовки», Tunneling and Underground Space Technology , vol. 47, стр. 93–105, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    47. К. К. Брэди, Г. Р. А. Уоттс и М. Р. Джонс, Руководство по применению AG39: Спецификация для пенобетона , Лаборатория дорожного агентства и транспортных исследований, Уоркхэм, Беркс, Великобритания, 2001. 25, стр. 49–54, 1991.

      Посмотреть по адресу:

      Google Scholar

    48. К. Каракурт, Х. Курама и И. Б. Топчу, «Использование природного цеолита в производстве ячеистого бетона», Cement and Concrete Composites , vol. 32, нет. 1, стр. 1–8, 2010.

      Просмотр:

      Сайт издателя | Google Scholar

    49. В. Кочи, Й. Мадера и Р. Черны, «Компьютерное проектирование внутренней теплоизоляционной системы, подходящей для автоклавных газобетонных конструкций», Applied Thermal Engineering , vol. 58, нет. 1–2, стр. 165–172, 2013 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    50. Шанг Х. С., Сонг Ю.П. Прочность на трехосное сжатие воздухововлекаемого бетона после циклов замораживания-оттаивания.0231 Наука и техника холодных регионов , vol. 90–91, стр. 33–37, 2013 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    51. А. Джаст и Б. Миддендорф, «Микроструктура высокопрочного пенобетона», Materials Characterization , vol. 60, нет. 7, стр. 741–748, 2009.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    52. Р. К. Валоре, «Ячеистый бетон, часть 1, состав и методы производства», ACI Journal Proceedings , vol. 50, pp. 773–796, 1954.

      Посмотреть по адресу:

      Google Scholar

    53. Сах и Х. Зайферт, «Технология пенобетона: возможности теплоизоляции при высоких температурах», Ceramic Forum International , Göller , том. 76, pp. 23–30, 1999.

      Посмотреть по адресу:

      Google Scholar

    54. Г. Руднаи, Легкие бетоны , Академикиадо, Будапешт, Венгрия, 1963.

    55. A. Short and W. Kinniburgh, Lightweight Concrete , Asia Publishing House, Delhi, India, 1963. Материаловедение и инженерия , том. 2018, стр. 1–8, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    56. М. Р. Джонс и А. Маккарти, «Предварительные взгляды на потенциал пенобетона как конструкционного материала», Журнал исследований бетона , том. 57, нет. 1, стр. 21–31, 2005 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    57. М. А. О. Мыдин и Ю. К. Ван, «Структурные характеристики легкой композитной стеновой системы из стального пенобетона и стали при сжатии», Thin-Walled Structures , vol. 49, нет. 1, стр. 66–76, 2011 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    58. Е. К. К. Намбияр и К. Рамамурти, «Модели, связывающие состав смеси с плотностью и прочностью пенобетона с использованием методологии поверхности отклика», Цементные и бетонные композиты , vol. 28, нет. 9, стр. 752–760, 2006.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    59. Комитет ACI 523, «Руководство по ячеистому бетону выше 50 фунтов на фут и бетону на заполнителе выше 50 фунтов на фут с прочностью на сжатие менее 2500 фунтов на квадратный дюйм», ACI Journal Proceeding , vol. 72, нет. 2, 1975.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    60. Э. П. Кирсли и П. Дж. Уэйнрайт, «Влияние высокого содержания летучей золы на прочность на сжатие пенобетона», Исследование цемента и бетона , vol. 31, стр. 105–112, 2001.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    61. С. С. Саху, И. С. Р. Ганди и С. Хвайракпам, «Современный обзор характеристик поверхностно-активных веществ и пены с точки зрения пенобетона», Журнал Института инженеров (Индия): Серия А , том. 99, нет. 2, стр. 391–405, 2018.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    62. C. Пикфорд и С. Кромптон, «Пенобетон в строительстве мостов», Concrete , vol. 30, pp. 14-15, 1996.

      Просмотр по адресу:

      Google Scholar

    63. Норлиа М.И., Амат Р.К., Рахим Н.Л. крупный заполнитель», Advanced Materials Research , vol. 689, стр. 265–268, 2013.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    64. Т. Х. Ви, С. Б. Данети и Т. Тамилсельван, «Влияние водоцементного соотношения на систему воздушных пустот пенобетона и их влияние на механические свойства», Magazine of Concrete Research , vol. 63, нет. 8, стр. 583–595, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    65. М. Б. Юссеф, Ф. Лавернь, К. Саб, К. Майлед и Дж. Неджи, «Увеличение упругой жесткости пенобетона как трехфазного композитного материала», Cement and Concrete Research , том. 110, стр. 13–23, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    66. А. Хаджимохаммади, Т. Нго и А. Кашани, «Устойчивые однокомпонентные геополимерные пены со стеклом и песком в качестве заполнителей», Construction and Building Materials , vol. 171, стр. 223–231, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    67. А. Кашани, Т. Д. Нго, П. Хемачандра и А. Хаджимохаммади, «Влияние обработки поверхности переработанной шинной крошкой на цементно-резиновое сцепление в бетонной композитной пене», Строительство и строительные материалы , том. 171, стр. 467–473, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    68. С. К. Агарвал, И. Масуд и С. К. Малхотра, «Совместимость суперпластификаторов с различными цементами», Construction and Building Materials , vol. 14, стр. 253–259, 2000.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    69. A. Zingg, F. Winnefeld, L. Holzer et al., «Взаимодействие суперпластификаторов на основе поликарбоксилатов с цементами, содержащими различные количества C3A», Цементные и бетонные композиты , vol. 31, нет. 3, стр. 153–162, 2009 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    70. C. Bing, W. Zhen, and L. Ning, «Экспериментальное исследование свойств высокопрочного пенобетона», Journal of Materials in Civil Engineering , vol. 24, нет. 1, стр. 113–118, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    71. O. Kayali, M.N. Haque, and B. Zhu, «Некоторые характеристики высокопрочного бетона с легким заполнителем, армированного фиброй», Цементные и бетонные композиты , vol. 25, нет. 2, стр. 207–213, 2003 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    72. Э. Т. Дауд и А. Дж. Хамад, «Поведение ударной вязкости высокоэффективного легкого пенобетона, армированного гибридными волокнами», Structural Concrete , vol. 16, нет. 4, стр. 496–507, 2015 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    73. Махзабин М. С., Хок Л.Дж., Хоссейн М.С., Канг Л.С. Влияние добавления обработанного волокна кенафа на производство и свойства вспененного композита, армированного волокном, стр. 9.0231 Строительство и строительные материалы , том. 178, стр. 518–528, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    74. Х. Аванг, М. Х. Ахмад и М. Алмулали, «Влияние кенафа и полипропиленовых волокон на механические и прочностные свойства легкого пенобетона, армированного волокнами», Journal of Engineering Science and Technology , vol. 10, нет. 4, стр. 496–508, 2015.

      Посмотреть по адресу:

      Google Scholar

    75. H. Awang и MH Ahmad, «Долговечность пенобетона с включением волокон», International Journal of Civil, Structural, Construction and Architectural Engineering , vol. 2014. Т. 8. С. 273–276.

      Просмотр по адресу:

      Google Scholar

    76. Мыдин М. А.О., Розлан Н.А., Ганесан С. Экспериментальные исследования механических свойств легкого пенобетона, армированного кокосовым волокном. Журнал материаловедения и наук об окружающей среде , том. 6, нет. 2015. Т. 2. С. 407–411. IV Международной конференции молодых ученых «Молодежь, наука, решения: идеи и перспективы», ЯГСИП 2017 , вып. 143, EDP Sciences, Берлин, Германия, декабрь 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    77. В. Аббас, Э. Дауд и Ю. Мохаммад, «Свойства пенобетона, армированного гибридными волокнами», в материалах 3-й Международной конференции по строительству, строительству и охране окружающей среды, BCEE3 2017 , vol. 162, EDP Sciences, Шарм-эль-Шейх, Египет, октябрь 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    78. Р. Дж. Пью, «Вспенивание, пенопластовые пленки, пеногасители и пеногасители», Advances in Colloid and Interface Science , том. 64, стр. 67–142, 1996.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    79. И. Т. Кудряшов, «Производство армированных пенобетонных плит крыши», ACI Journal Proceedings , vol. 46, нет. 9, стр. 37–68, 1949.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    80. Ф. Зулкарнайн и М. Рамли, «Долговечность конструкции из пенобетонной смеси с микрокремнеземом для жилищного строительства», Journal of Materials Science and Engineering , том. 5, стр. 518–527, 2011.

      Просмотр по адресу:

      Google Scholar

    81. П. Чиндапрасирт и У. Раттанасак, «Усадочное поведение конструкционного пенобетона, содержащего соединения гликоля и летучую золу», Материалы и Дизайн , том. 32, нет. 2, стр. 723–727, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    82. М. Р. Джонс, М. Дж. Маккарти и А. Маккарти, «Улучшение использования летучей золы в бетоне: перспектива Великобритании», в Материалы Международного симпозиума по утилизации золы 2003 г., Центр прикладных исследований в области энергетики , Университет Кентукки, Лексингтон, Кентукки, США, 2003 г. пенобетон на заполнителе», Инженер-строитель , вып. 68, нет. 9, pp. 167–73, 1990.

      Просмотр по адресу:

      Google Scholar

    83. М. Р. Джонс и А. Маккарти, «Теплота гидратации в пенобетоне: влияние компонентов смеси и пластическая плотность», Исследование цемента и бетона , vol. 36, нет. 6, стр. 1032–1041, 2006.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    84. К. Т. Ван, Х. Г. Чжу, Т. Ю. П. Юэн и др., «Разработка модели пенобетона с низкой усадкой при высыхании и гидромеханической конечно-элементной модели для сборных строительных фасадов», Строительство и строительные материалы , том. 165, стр. 939–957, 2018.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    85. E.K.K. Nambiar и K. Ramamurthy, «Усадочное поведение пенобетона», Journal of Materials in Civil Engineering , vol. 21, нет. 11, стр. 631–636, 2009 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    86. H. Weigler and S. Karl, «Структурный легкий заполнитель из пенобетона с уменьшенной плотностью и легким заполнителем», International Journal of Cement Composites and Lightweight Concrete , vol. 2, нет. 2, стр. 101–104, 19.80.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    87. Д. Фаллиано, Д. Д. Доменико, Г. Риккарди и Э. Гульяндоло, «Прочность на сжатие и изгиб пенобетона, армированного волокном: влияние содержания волокна, условий отверждения и плотности в сухом состоянии», Строительство и строительство Материалы , вып. 198, стр. 479–493, 2019.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    88. C. L. Hwang and V. A. Tran, «Технические и прочностные свойства самоуплотняющегося бетона с вспененным легким заполнителем», Журнал материалов гражданского строительства , том. 28, нет. 9, ID статьи 04016075, 2016 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    89. Ше В., Ду Ю., Чжао Г. Т., Фенг П., Чжан Ю. С., Цао С. Ю. Влияние крупной летучей золы на характеристики пенобетона и ее применение в дорожном полотне высокоскоростных железных дорог. Строительство и строительные материалы , вып. 170, стр. 153–166, 2018.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    90. В. Н. Тарасенко, «Влияние компонентов вспененной матрицы на свойства пенобетона», IOP Conference Series Materials Science and Engineering , vol. 327, ID статьи 032054, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    91. У. Х. Чжао, К. Су, У. Б. Ван, Л. Л. Ню и Т. Лю, «Экспериментальное исследование влияния воды на свойства монолитного пенобетона», Достижения в области материаловедения и инженерии , том. 2018 г., идентификатор статьи 7130465, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    92. Н. Макул и Г. Суа-Ям, «Характеристики и использование отходов фильтрационной лепешки сахарного тростника в производстве легкого пенобетона», Journal of Cleaner Production , vol. 126, стр. 118–133, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    93. Кудяков А.И., Стешенко А.Б. Усадочные деформации цементного пенобетона.0231 Серия конференций IOP — Материаловедение и инженерия , vol. 71, ID статьи 012019, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    94. X. M. Chen, Y. Yan, Y. Z. Liu, Z. H. Hu, «Использование летучей золы в циркулирующем псевдоожиженном слое для приготовления пенобетона», Construction and Building Materials , vol. 54, стр. 137–146, 2014.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    95. Горбани С., Горбани С., Тао З., Брито Дж. Д., Тавакколизаде М. Влияние намагниченной воды на стабильность пены и прочность пенобетона на сжатие, стр. Строительство и строительные материалы , том. 197, стр. 280–290, 2019.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    96. Д. М. А. Хуйскес, А. Кеулен, К. Л. Ю и Х. Дж. Х. Брауэрс, «Проектирование и оценка характеристик сверхлегкого геополимерного бетона», Материалы и дизайн, , том. 89, стр. 516–526, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    97. З. М. Джайни, С. Н. Мохатар, А. С. М. Юсоф, С. Зулкипли и М. Х. А. Рахман, «Влияние гранулированного кокосового волокна на прочность на сжатие пенобетона», в Материалы 3-й Международной конференции по гражданскому и экологическому строительству для устойчивого развития , том. 47, Малакка, Малайзия, 2015 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    98. З. В. Лю, К. Чжао, К. Ху и Ю. Ф. Тан, «Влияние водоцементного отношения на пористую структуру и прочность пенобетона», Достижения в области материаловедения и инженерии , том. 2016 г., идентификатор статьи 9520294, 2016 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    99. Y. Xie, J. Li, Z. Y. Lu, J. Jiang и Y. H. Niu, «Влияние бентонитовой суспензии на воздушно-пустотную структуру и свойства пенобетона», Construction and Building Materials , vol. 179, стр. 207–219, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    100. А. Хаджимохаммади, Т. Нго и П. Мендис, «Повышение прочности готовых пенопластов для применения в пенобетоне», Цементные и бетонные композиты , том. 87, стр. 164–171, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    101. А. А. Хилал, Н. Х. Том и А. Р. Доусон, «О структуре пустот и прочности пенобетона, изготовленного без/с добавками», Construction and Building Materials , vol. 85, стр. 157–164, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    102. С. К. Лим, К. С. Тан, С. Чжао и Т. С. Линг, «Прочность и ударная вязкость легкого пенобетона с различной фракцией песка», KSCE Journal of Civil Engineering , vol. 19, нет. 7, стр. 2191–2197, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    103. Р. Гоури, К. Б. Ананд, Р. Гоури и К. Б. Ананд, «Использование летучей золы и ультрадисперсного GGBS для высокопрочного пенобетона», в Proceedings of the International Conference on Advances in Materials and Manufacturing Applications. , Серия конференций IOP: Материаловедение и инженерия , vol. 310, Мельбурн, Австралия, сентябрь 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    104. Т. Дж. Чандни и К. Б. Ананд, «Использование переработанных отходов в качестве наполнителя пенобетона», Journal of Building Engineering , vol. 19, стр. 154–160, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    105. С. К. Лим, К. С. Тан, Б. Ли, Т. С. Линг, М. У. Хоссейн и К. С. Пун, «Использование больших объемов карьерных отходов в производстве легкого пенобетона», Строительство и строительные материалы , том. 151, стр. 441–448, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    106. С. Б. Парк, Э. С. Юн и Б. И. Ли, «Влияние обработки и изменений материалов на механические свойства легких цементных композитов», Cement and Concrete Research , vol. 29, стр. 193–200, 1999.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    107. X.D. Chen, S.X. Wu, and J.K. Zhou, «Влияние пористости на прочность на сжатие и растяжение цементного раствора», Строительство и строительные материалы , том. 40, стр. 869–874, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    108. C. Lian, Y. Zhuge, and S. Beecham, «Взаимосвязь между пористостью и прочностью пористого бетона», Construction and Building Materials , vol. 25, стр. 4294–4298, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    109. E.K.K. Nambiar and K. Ramamurthy, «Модели для прогнозирования прочности пенобетона», Материалы и конструкции , том. 41, стр. 247–254, 2008 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    110. E. Papa, V. Medri, D. Kpogbemabou et al., «Пористость и изоляционные свойства пен на основе микрокремнезема», Energy and Buildings , vol. 131, стр. 223–232, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    111. Дж. Фенг, Р. Ф. Чжан, Л. Л. Гонг, Ю. Ли, В. Цао и X. Д. Ченг, «Разработка пористого геополимера на основе летучей золы с низкой теплопроводностью», Материалы и конструкция , том. 65, стр. 529–533, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    112. Ф. С. Хань, Г. Зайферт, Ю. Ю. Чжао и Б. Гиббс, «Поведение акустического поглощения пены алюминия с открытыми порами», Journal of Physics D: Applied Physics , vol. 36, с. 294, 2003.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    113. E. K. K. Nambiar and K. Ramamurthy, «Характеристики пустот в пенобетоне», Исследование цемента и бетона , vol. 37, нет. 2, стр. 221–230, 2007.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    114. Тэм К. Т., Лим Т. Ю., Равиндрараджа Р. С. и Ли С. Л., «Взаимосвязь между прочностью и объемным составом ячеистого бетона, отверждаемого влажным способом», Magazine of Concrete Research , vol. 39, нет. 138, стр. 12–18, 1987.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    115. M. H. Thakrele, «Экспериментальное исследование пенобетона», Международный журнал исследований и разработок в области строительства, строительства, окружающей среды и инфраструктуры , vol. 4, нет. 1, стр. 145–158, 2014.

      Посмотреть по адресу:

      Google Scholar

    116. Дж. Х. Ли, «Влияние прочности бетона в сочетании с содержанием волокна в остаточной прочности на изгиб фибробетона», Композитные конструкции , том. 168, стр. 216–25, 2017.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    117. М. Нехди, Ю. Джеббар и А. Хан, «Модель нейронной сети для предварительно отформованного пенобетона», Журнал материалов ACI , том. 98, нет. 5, стр. 402–409, 2001.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    118. А. Байкасоглу, Х. Гюллю, Х. Чанакчи и Л. Озбакыр, «Прогнозирование прочности известняка на сжатие и растяжение с помощью генетического программирования», Expert Systems with Applications , vol. 35, нет. 1–2, стр. 111–123, 2008.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    119. Т. Нгуен, А. Кашани, Т. Нго и С. Бордас, «Глубокая нейронная сеть с нейроном высокого порядка для прогнозирования прочности пенобетона», Компьютерное проектирование гражданского и инфраструктурного строительства , том. 34, стр. 316–332, 2019.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    120. З. М. Ясин, Р. К. Део, А. Хилал и др., «Прогнозирование прочности на сжатие легкого пенобетона с использованием модели машин с экстремальным обучением», Достижения в инженерном программном обеспечении , vol. 115, стр. 112–125, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    121. ACI Committee 523, Guide for Cast-in-Place Low Density Cellular Concrete , Farmington Hills, MI, USA, 2006.

    122. W. H. Zhao, J. J. Huang, Q. Su, and T. T. , «Модели для прогнозирования прочности высокопористого монолитного пенобетона», Достижения в области материаловедения и инженерии , том. 2018, Артикул ID 3897348, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    123. З. Х. Чжан и Х. Ван, «Характеристики пор геополимерного пенобетона и их влияние на прочность на сжатие и модуль», Frontiers in Materials , vol. 3, стр. 1–10, 2016 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    124. Э. П. Кирсли и П. Дж. Уэйнрайт, «Влияние пористости на прочность пенобетона», Исследование цемента и бетона , том. 32, нет. 2, стр. 233–239, 2002.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    125. Э. П. Кирсли и П. Дж. Уэйнрайт, «Зольность для оптимальной прочности пенобетона», Cement and Concrete Research , vol. 32, нет. 2, стр. 241–246, 2002.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    126. Э. П. Кирсли и П. Дж. Уэйнрайт, «Пористость и проницаемость пенобетона», Исследование цемента и бетона , том. 31, нет. 5, стр. 805–812, 2001.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    127. М. Релер и И. Одлер, «Исследования взаимосвязи между пористостью, структурой и прочностью гидратированных портландцементных паст и влиянием пористости», Cement and Concrete Research , vol. 15, нет. 2, стр. 320–330, 1985.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    128. Г. К. Хофф, «Аспекты пористости и прочности ячеистого бетона», Исследование цемента и бетона , vol. 2, нет. 1, стр. 91–100, 1972.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    129. Л. Кокс и С. Ван Дейк, «Пенобетон: другой вид смеси», Бетон , том. 36, стр. 54-55, 2002.

      Посмотреть по адресу:

      Google Scholar

    130. Б. К. Ньяме, «Проницаемость нормальных и легких растворов», Magazine of Concrete Research , vol. 37, нет. 130, стр. 44–48, 1985.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    131. А. А. Хилал, Н. Х. Том и А. Р. Доусон, «Пористая структура и характеристики проникновения пенобетона», Journal of Advanced Concrete Technology , vol. 12, нет. 12, стр. 535–544, 2014.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    132. Р. Л. Дэй и Б. К. Марш, «Измерение пористости в смешанных цементных пастах», Cement and Concrete Research , том. 18, нет. 1, стр. 63–73, 1988.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    133. М. Р. Джонс и А. Маккарти, «Использование необработанной летучей золы угля с низким содержанием извести в пенобетоне», Fuel , vol. 84, нет. 11, стр. 1398–1409, 2005.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    134. Е. К. К. Намбиар и К. Рамамурти, «Сорбционные характеристики пенобетона», Cement and Concrete Research , vol. 37, нет. 9, стр. 1341–1347, 2007.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    135. Э. Намсоне, Г. Шахменко и А. Корякинс, «Долговечность высокоэффективного пенобетона», Procedia Engineering , vol. 172, стр. 760–767, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    136. Шанг Х.С., Сонг Ю.П. Экспериментальное исследование прочности и деформации простого бетона при двухосном сжатии после циклов замораживания и оттаивания, стр. 9.0231 Исследование цемента и бетона , vol. 36, нет. 10, стр. 1857–1864, 2006.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    137. Х. Д. Юн, С. В. Ким, Ю. О. Ли и К. Рокуго, «Поведение при растяжении синтетического, армированного волокнами деформационно-упрочняемого композита на основе цемента (SHCC) после воздействия замораживания и оттаивания», Cold Regions Science and Технология , вып. 67, нет. 1–2, стр. 49–57, 2011 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    138. С. Цивилис, Г. Батис, Э. Чаниотакис, Г. Григориадис и Д. Теодосис, «Свойства и поведение известняково-цементного бетона и раствора», Исследование цемента и бетона , том. 30, нет. 10, стр. 1679–1683, 2000.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    139. Р. Джонс, Л. Чжэн, А. Еррамала и К. С. Рао, «Использование переработанных и вторичных заполнителей в пенобетоне», Magazine of Concrete Research , vol. 64, нет. 6, стр. 513–525, 2012.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    140. Х. Т. Цао, Л. Букеа, А. Рэй и С. Йозгхатлян, «Влияние состава цемента и pH окружающей среды на сульфатостойкость портландцемента и смешанных цементов», Цемент и бетонные композиты , об. 19, нет. 2, стр. 161–171, 1997.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    141. П. Браун, Р. Д. Хутон и Б. Кларк, «Микроструктурные изменения в бетонах при воздействии сульфатов», Цементные и бетонные композиты , vol. 26, нет. 8, стр. 993–999, 2004.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    142. М. Сахмаран, О. Касап, К. Дуру и И. О. Яман, «Влияние состава смеси и водоцементного отношения на сульфатостойкость смешанных цементов», Cement and Concrete Composites , vol. 29, нет. 3, стр. 159–167, 2007 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    143. Г. И. С. Ранджани и К. Рамамурти, «Поведение пенобетона в сульфатной среде», Цементные и бетонные композиты , vol. 34, нет. 7, стр. 825–834, 2012 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    144. П. Чиндапрасирт, С. Рукзон и В. Сирививатнанон, «Устойчивость к проникновению хлоридов в смешанный портландцементный раствор, содержащий топливную золу пальмового масла, золу рисовой шелухи и летучую золу», Construction and Building Materials , об. 22, стр. 932–938, 2008 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    145. М. Р. Джонс и А. Маккарти, Поведение и оценка пенобетона для применения в строительстве , Томас Телфорд, Лондон, Великобритания, 2005 г. Специальная техническая публикация, Филадельфия, Пенсильвания, США, 1994.

    146. Д. Олдридж и Т. Анселл, «Пенобетон: проектирование производства и оборудования, свойства, применение и потенциал», в Материалы однодневного семинара по пенобетону. Бетон: свойства, области применения и новейшие технологические разработки , pp. 1–7, Loughborough University, 2001.

      Просмотр по адресу:

      Google Scholar

    147. Прошин А., Береговой В. А., Береговой А. М., Еремкин И. А. Адаптация к неавтоклавным бетонам и пенобетонам. the Regional Conditions , Thomas Telford, London, UK, 2005.

    148. A. Giannakou and M.R. Jones, Возможности пенобетона для улучшения тепловых характеристик малоэтажных жилых домов , Thomas Telford, London, UK, 2002.

    149. Н. Мохд Захари, И. Абдул Рахман, А. Заиди и А. Муджахид, «Пенобетон: потенциальное применение в теплоизоляции», в Материалах конференции технических университетов Малайзии по технике и технологиям (MUCEET ) , MS Garden, Kuantan, Pahang, Malaysia, 2009.

      Посмотреть по адресу:

      Google Scholar

    150. О. П. Шривастава, «Легкий газобетон — обзор», Indian Concrete Journal , vol. 51, стр. 10–23, 1977.

      Просмотр по адресу:

      Google Scholar

    151. Б. Надь, С. Г. Неме и Д. Загри, «Тепловые свойства и моделирование фибробетонов», Energy Procedia , vol. 78, стр. 2742–2747, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    152. Аванг Х., Мидин А. О. и Ахмад М. Х., «Механические и прочностные свойства волокнистого легкого пенобетона», Австралийский журнал фундаментальных и прикладных наук , том. 7, нет. 7, pp. 14–21, 2013.

      Посмотреть по адресу:

      Google Scholar

    153. Ян Ф. Ю., «Исследование факторов влияния свойств пенобетона», Юго-Западный университет науки и технологий, Мяньян, Китай, 2009, магистерская диссертация.

      Посмотреть по адресу:

      Google Scholar

    154. Т. Г. Ричард, «Поведение ячеистого бетона при низких температурах», ACI Journal Proceedings , vol. 74, нет. 4, стр. 173–178, 1977.

      Посмотреть на:

      Сайт издателя | Google Scholar

    155. Т. Г. Ричард, Дж. А. Добогай, Т. Д. Герхардт и В. К. Янг, «Ячеистый бетон — потенциальная несущая изоляция для криогенных применений», IEEE Transactions on Magnetics , vol. 11, нет. 2, стр. 500–503, 1975.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    156. Р. Кумар, Р. Лахани и П. Томар, «Простой новый метод расчета смеси и оценка свойств пенобетонов с отходами известнякового шлама», Журнал чистого производства , том. 171, стр. 1650–1663, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    157. Г. Санг, Ю. Чжу, Г. Ян и Х. Б. Чжан, «Подготовка и характеристика высокопористого вспененного материала на основе цемента», Строительство и строительные материалы , том. 91, стр. 133–137, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    158. Н. Гоурипалан, Дж. Г. Кабрера, А. Р. Кузенс и П. Дж. Уэйнрайт, «Влияние отверждения на долговечность», стр. 9.0231 Concrete International , vol. 12, нет. 12, pp. 47–54, 1990.

      Просмотр по адресу:

      Google Scholar

    159. Ф. Батул и В. Биндиганавил, «Распределение размеров пустот пены на цементной основе и его влияние на теплопроводность», Строительство и строительные материалы , вып. 149, стр. 17–28, 2017 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    160. J. Jiang, Z. Lu, Y. Niu, J. Li, Y. Zhang, «Исследование приготовления и свойств высокопористых пенобетонов на основе обычного портландцемента», Материалы и конструкция , том. 92, стр. 949–959, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    161. EKK Nambiar and K. Ramamurthy, «Характеристики пенобетона в свежем состоянии», Journal of Materials in Civil Engineering , vol. 20, нет. 2, стр. 111–117, 2008 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    162. М. Р. Джонс, К. Озлутас и Л. Чжэн, «Стабильность и нестабильность пенобетона», Журнал исследований бетона , том. 68, нет. 11, стр. 542–549, 2016 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    163. Кузелова Э., Пах Л., Палоу М. Влияние активированного пенообразователя на свойства пенобетона // Строительные материалы . . Том. 125, стр. 998–1004, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    164. С. Горбани, С. Шарифи, Дж. де Брито, С. Горбани, М. А. Джалаер и М. Тавакколизаде, «Использование статистического анализа и лабораторных испытаний для оценки влияния намагниченной воды на стабильность пенообразования». реагенты и пенобетон» Строительство и строительные материалы , том. 207, стр. 28–40, 2019 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    165. М. Шива, К. Рамамурти и Р. Дхамодхаран, «Разработка зеленого пенообразователя и оценка его эффективности», Цементные и бетонные композиты , том. 80, стр. 245–257, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    166. Багери А., Самеа С.А. Параметры, влияющие на устойчивость пенобетона, Журнал материалов гражданского строительства , том. 30, нет. 6, ID статьи 04018091, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    167. Т. Адамс, А. Фоллпрахт, Дж. Хауфе, Л. Хильдебранд и С. Брелл-Коккан, «Сверхлегкий пенобетон для автоматизированного фасадного применения», Magazine of Concrete Research , vol. . 71, нет. 8, стр. 424–436, 2019.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    168. М. Конг и К. Бинг, «Свойства пенобетона с грунтом в качестве наполнителя», Construction and Building Materials , vol. 76, стр. 61–69, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    169. M. Qiao, J. Chen, C. Yu, S. S. Wu, N. X. Gao, Q. P. Ran, «Поверхностно-активные вещества Gemini как новые воздухововлекающие агенты для бетона», Cement and Concrete Research , vol. 100, стр. 40–46, 2017.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    170. К. Кремер, М. Шауэрте, Т. Мюллер, С. Гебхард и Р. Треттин, «Применение армированных трехфазных пен в пенобетоне UHPC», Construction and Building Materials , vol. 131, стр. 746–757, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    171. Т. С. Хорозов, «Пены и пенные пленки, стабилизированные твердыми частицами», Current Opinion in Colloid and Interface Science , vol. 13, нет. 3, стр. 134–140, 2008.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    172. К. Кремер, Т. Л. Коуальд и Р. Х. Ф. Треттин, «Пуццолановые отвержденные трехфазные пены», Cement and Concrete Composites , vol. 62, стр. 44–51, 2015 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    173. Бинкс Б. П. и Хорозов Т. С., «Водные пены, стабилизированные исключительно наночастицами кремнезема», Angewandte Chemie International Edition , vol. 44, нет. 24, стр. 3722–3725, 2005.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    174. U. T. Gonzenbach, AR Studart, E. Tervoort и LJ Gauckler, «Стабилизация пен неорганическими коллоидными частицами», Langmuir, ACS Journal of Surfaces and Colloids , vol. 22, нет. 26, ID статьи 10983, 2006 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    175. Стударт А.Р., Гонценбах У.Т., Акартуна И., Тервоорт Э., Гауклер Л.Дж. Материалы из пен и эмульсий, стабилизированных коллоидными частицами, Журнал химии материалов , том. 17, нет. 31, стр. 3283–3289, 2007.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    176. Y. Du, Получение наномодифицированного пенобетона и его стабильность и механизм улучшения , Юго-восточный университет, Нанкин, Китай, диссертация на степень магистра, 2018.

    177. F. Q. Tang, J. A. Xiao Тан и Л. Цзян, «Влияние частиц SiO 2 на стабилизацию пены», Journal of Colloid and Interface Science , том. 131, нет. 2, стр. 498–502, 1989.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    178. Аларгова Р. Г., Вархадпанде Д. С., Паунов В. Н., Велев О. Д., «Суперстабилизация пены полимерными микростержнями», Langmuir , vol. 20, нет. 24, стр. 10371–10374, 2004.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    179. Бинкс Б. П., Киркланд М. и Родригес Дж. А., «Происхождение стабилизации водных пен в смесях наночастиц и поверхностно-активных веществ», Soft Matter , vol. 4, нет. 12, стр. 2373–2382, 2008.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    180. W. She, Y. Du, CW Miao et al., «Применение пен, модифицированных органическими и наночастицами, в пенобетоне: механизмы армирования и стабилизации», Cement and Concrete Research , vol. 106, стр. 12–22, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    181. Кериене Дж., Клигис М., Лаукайтас А., Яколев Г., Спокаускас А., Алекнявичюс М. Влияние добавки многослойных углеродных нанотрубок на свойства неавтоклавных и автоклавных аэрируемых бетоны», Строительство и строительные материалы , том. 49, стр. 527–535, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    182. Яколев Г., Первушин Г., Маева И. и др., «Модификация конструкционных материалов многостенными углеродными нанотрубками», Procedia Engineering , vol. 57, стр. 407–413, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    183. Яколев Г., Керине Дж., Гайлиус А., Гирниене И. Пенобетон на цементной основе, армированный углеродными нанотрубками, Материаловедение , том. 12, нет. 2, pp. 147–151, 2006.

      Просмотр по адресу:

      Google Scholar

    184. Г. Ю. Ли, П. М. Ван и X. Чжао, «Механическое поведение и микроструктура цементных композитов, содержащих многослойный углерод с обработанной поверхностью. нанотрубки», Carbon , vol. 43, нет. 6, стр. 1239–1245, 2005.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    185. К. Кремер, О. М. Азубике и Р. Х. Ф. Треттин, «Усиленные и упрочненные трехфазные пены», Цементные и бетонные композиты , vol. 73, стр. 174–184, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    186. К. Кремер и Р. Х. Ф. Треттин, «Исследования наноструктурированных трехфазных пен и их применение в пенобетоне — краткое изложение», Advanced Materials Letters , vol. 8, нет. 11, pp. 1072–1079, 2017.

      Просмотр по адресу:

      Google Scholar

    187. C. Krämer, M. Schauerte, T.L. Характеристика материалов , том. 102, стр. 173–179, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    188. Н. Нараянан и К. Рамамурти, «Структура и свойства газобетона: обзор», Cement and Concrete Composites , vol. 22, нет. 5, стр. 321–329, 2000.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    189. Х. Аль-Хайат и М. Н. Хак, «Влияние начального отверждения на раннюю прочность и физические свойства легкого бетона», Исследование цемента и бетона , vol. 28, нет. 6, стр. 859–866, 1998.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    190. О. Каяли, М. Н. Хак и Б. Чжу, «Усадка при высыхании фибробетона с легким заполнителем, содержащим летучую золу», Cement and Concrete Research , vol. 29, нет. 11, стр. 1835–1840, 1999.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    191. М. Гесоглу, Т. Озтуран и Э. Гюнейси, «Усадочное растрескивание легкого бетона, изготовленного с заполнителями из золы-уноса холодного связывания», Исследование цемента и бетона , vol. 34, нет. 7, стр. 1121–1130, 2004.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    192. Д. Д. Доменико, «ЖБ-элементы, усиленные внешними плитами FRP: подход к анализу предельных значений на основе конечных элементов», Composites Part B: Engineering , vol. 71, стр. 159–174, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    193. В. Пяста, Ю. Гура и В. Будзыньски, «Взаимосвязь напряжения и деформации и модуль упругости горных пород, обычных и высокопрочных бетонов», Строительство и строительные материалы , том. 153, стр. 728–739, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    194. Дж. Се и Дж. Б. Ян, «Экспериментальные исследования и анализ прочности на сжатие бетона с нормальным весом при низких температурах», Structural Concrete , vol. 19, стр. 1235–1244, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    195. Д. К. Ли, З. Л. Ли, К. С. Лв, Г. Х. Чжан и Ю. М. Инь, «Модель прогнозирования эффективной прочности бетона на растяжение и сжатие с учетом пористости и размера пор», Строительство и строительные материалы , том. 170, стр. 520–526, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    196. К. Дин, «Технологические исследования гибких дефектов окаймления туннельной конструкции», Школа гражданского строительства, Шаньдунский университет, Цзинань, Китай, 2018, магистерская диссертация.

      Посмотреть по адресу:

      Google Scholar

    197. C. Rudolph and J. Valore, «Ячеистые бетоны, часть 2, физические свойства», ACI Journal Proceedings , том. 50, стр. 817–836, 1954.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    198. А. О. Ричард и М. Рамли, «Экспериментальное производство устойчивого легкого пенобетона», British Journal of Applied Science and Technology , vol. 3, нет. 4, стр. 994–1005, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    199. А. Ф. Рослан, Х. Аванг, М. М., «Влияние различных добавок на усадку при высыхании, прочность на сжатие и изгиб легкого пенобетона (LFC)», Advanced Materials Research , vol. 626, стр. 594–604, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    200. М. А. О. Мыдин, Ю. К. Ван, «Механические свойства пенобетона при воздействии высоких температур», Construction and Building Materials , vol. 26, стр. 638–654, 2012.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    201. C. Ma and B. Chen, «Экспериментальное исследование приготовления и свойств нового пенобетона на основе магнезиально-фосфатного цемента», Строительство и строительные материалы , том. 137, стр. 160–168, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    202. F. Gouny, F. Fouchal, P. Maillard и S. Rossignol, «Геополимерный раствор для деревянных и земляных конструкций», Construction and Building Materials , vol. 32, стр. 188–195, 2012.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    203. Л. З. Лю, С. Мирамини и А. Хаджимохаммади, «Определение основных свойств пенобетона с помощью неразрушающего метода», Неразрушающий контроль и оценка , том. 34, нет. 1, стр. 54–69, 2019 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    204. К. К. Б. Сирам и Р. К. Арджун, «Бетон + зеленый = пенобетон», International Journal of Civil Engineering and Technology , vol. 4, pp. 179–184, 2013.

      Просмотр по адресу:

      Google Scholar

    205. А. С. Мун и В. Варгезе, «Устойчивое строительство с использованием пенобетона как зеленого строительного материала», Международный журнал современных тенденций в области инженерии и исследований , том. 2, нет. 2, pp. 13–16, 2014.

      Посмотреть по адресу:

      Google Scholar

    206. A. S. Moon, V. Varghese, and S.S. Waghmare, «Пенобетон как зеленый строительный материал», International Journal of Research in Техника и технологии , вып. 2, нет. 9, pp. 25–32, 2015.

      Просмотр по адресу:

      Google Scholar

    207. W. She, M.R. Jones, YS Zhang, X. Shi, «Потенциальное использование вспененного строительного раствора (FM) для термической модернизации китайских традиционных резиденций в стиле хуэй» Международный журнал архитектурного наследия , том. 9, нет. 7, стр. 775–793, 2015.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    208. K. Jitchaiyaphum, T. Sinsiri, C. Jaturapitakkul и P. Chindaprasirt, «Ячеистый легкий бетон, содержащий летучую золу с высоким содержанием кальция и природный цеолит», International Journal of Minerals, Metallurgy, and Materials , об. 20, нет. 5, стр. 462–471, 2013 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    209. X. Ю., «Исследование пенообразователя для приготовления легкого пенобетона», Научный колледж Северо-восточного университета, Шэньян, Китай, 2015, диссертация магистра.

      Просмотр по адресу:

      Google Scholar

    210. М. Н. Ван, Ю. К. Донг и Л. И, «Аналитическое решение для лёссового туннеля на основе билинейного критерия прочности», Механика грунтов и проектирование фундаментов , том. 57, нет. 3, стр. 151–163, 2020.

      Посмотреть по адресу:

      Google Scholar

    211. Т. Лю, Ю. Дж. Чжун, З. Х. Фэн, В. Сюй и Ф. Т. Сонг, «Новая технология строительства неглубокого туннеля в смешанных грунтах из валунов и булыжника», Достижения в области гражданского строительства , том. 2020, ID статьи 5686042, 14 страниц, 2020.

      Посмотреть по адресу:

      Google Scholar

    212. Дж. С. Лай, С. Л. Ван, Дж. Л. Цю и др., «Современный обзор устойчивой энергетики- на основе технологии защиты от замерзания для туннелей в холодных регионах Китая», Renewable and Sustainable Energy Reviews , том. 82, нет. 3, стр. 3554–3569, 2018.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    213. X. L. Weng, Y. F. Sun, B. H. Yan, H. S. Niu, R. A. Lin и S. Q. Zhou, «Испытания на центрифуге и численное моделирование устойчивости забоя туннеля с учетом продольного угла наклона и стационарного просачивания в мягкой глине», Tunneling и Подземная космическая техника , вып. 96, стр. 218–229, 2020.

      Посмотреть по адресу:

      Google Scholar

    214. Z. Zhou, Y. Dong, P. Jiang, D. Han, and T. Liu, «Расчет бокового трения сваи с помощью многопараметрического статистического анализа», Advances in Civil Engineering , vol. 2019 г., идентификатор статьи 2638520, 12 страниц, 2019 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    215. К. К. Юань, «Высокопрочный и теплоизоляционный пенобетон: разработка и применение в тоннеле холодного региона», Журнал гляциологии и геокриологии , том. 2016. Т. 38. С. 438–444.

      Просмотр по адресу:

      Google Scholar

    216. Чен В. З., Тиан Х. М., Юань Дж. К. и Тан Дж. К., «Характеристики деградации пенобетона с легким заполнителем и полипропиленовым волокном при циклах замораживания-оттаивания», Magazine of Concrete Research , том. 65, нет. 12, стр. 720–730, 2013.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    217. Ю. Ю. Ли, С. С. Сюй, Х. К. Лю, Э. Л. Ма и Л. С. Ван, «Перемещение и характеристики напряжения фундамента туннеля в просадочном лессовом грунте, усиленном колоннами струйной цементации», Достижения в области гражданского строительства , том. 2018 г., идентификатор статьи 2352174, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    218. З. К. Ван, Ю. Л. Се, Х. К. Лю и З. Х. Фэн, «Анализ деформации и структурной безопасности новой заполненной бетоном опорной системы из стальных труб в лессовом туннеле», Европейский журнал экологического и гражданского строительства , том. 2018, стр. 1–21, 2019.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    219. С. Б. Чжан, С. Ю. Хе, Дж. Л. Цю, В. Сюй, Р. Гарнес и Л. С. Ван, «Характеристики смещения городского туннеля в илистом грунте методом мелкого туннелирования», Достижения в области гражданского строительства , том. 2020 г., идентификатор статьи 3975745, 16 страниц, 2020 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    220. У. С. Чжао, У. З. Чен, X. Дж. Тан и С. Хуанг, «Исследование пенобетона, используемого в качестве сейсмоизоляционного материала для туннелей в скале», стр. 9.0231 Инновации в области исследования материалов , vol. 17, нет. 7, стр. 465–472, 2013 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    221. С. Хуан, В. З. Чен, Дж. П. Ян, С. Х. Го и С. Дж. Цяо, «Исследование динамических реакций, вызванных землетрясением, и сейсмических мер для подземных инженерных работ», Китайский журнал горной механики и инженерии , том . 28, нет. 3, стр. 483–490, 2009 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    222. M. Gasc-Barbier, S. Chanchole и P. Bérest, «Ползучесть буровой глинистой породы», Applied Clay Science , vol. 26, нет. 1–4, стр. 449–458, 2004 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    223. М. Дж. Хип, П. Бауд, П. Г. Мередит, С. Винчигерра, А. Ф. Белл и И. Г. Майнд, «Хрупкая ползучесть базальта и ее применение к деформации вулканов, зависящей от времени», Earth and Planetary Science Letters , том. 307, нет. 1-2, стр. 71–82, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    224. Д. К. Ван, Дж. П. Вей, Г. З. Инь, Ю. Г. Ван и З. Х. Вен, «Трехосная ползучесть углесодержащих газов в лаборатории», Procedia Engineering , vol. 26, стр. 1001–1010, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    225. М. Науманн, У. Хунше и О. Шульце, «Экспериментальные исследования анизотропии дилатансии, разрушения и ползучести опаловой глины», Физика и химия Земли, части A/B/C , vol. 32, нет. 8–14, стр. 889–895, 2007.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    226. Б. С. Юань, «Применение коррозионно-стойкого воздухонепроницаемого бетона на правой линии №. 2 Туннель Тифэншань», Highway , vol. 7, стр. 199–201, 2006 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    227. Х. Ван, В. З. Чен, X. Дж. Тан, Х. М. Тянь и Дж. Дж. Цао, «Разработка нового типа пенобетона и его применение для анализа устойчивости большепролетного тоннеля из мягких пород», Журнал Центрального Южного Университета , том. 19, нет. 11, стр. 3305–3310, 2012.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    228. Г. Дж. Ву, В. З. Чен, Х. М. Тиан, С. П. Цзя, Дж. П. Ян и X. Дж. Тан, «Численная оценка податливой системы поддержки крепи туннеля, используемой для ограничения больших деформаций при сжатии породы», Науки об окружающей среде , том. 77, с. 439, 2018.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    229. Применение пенобетона , 2018 г., http://www.foamedconcrete.co.uk.

    230. М. Д. Джалал, А. Танвир, К. Джагдиш и Ф. Ахмед, «Пенобетон», Международный журнал исследований в области гражданского строительства , том. 8, нет. 1, стр. 1–14, 2017 г., http://www.ripublication.com/ijcer17/ijcerv8n1_01.pdf.

      Посмотреть по адресу:

      Google Scholar

    231. Примеры использования пенобетона , 2019 г., http://www.gsfoamconcrete.co.uk.

    232. К. Дин, С. С. Ли, X. Ю. Чжоу и др., «Эффект заполнения пенобетоном верхнего дефекта вторичной облицовки туннеля», Река Янцзы , том. 48, нет. 18, стр. 73–77, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    233. Дж. Чжан, «Ландшафтный дизайн портала туннеля — пример туннеля Улаофэн в живописном районе западного озера в Ханчжоу», Журнал Хэбэйских сельскохозяйственных наук, , том. 13, нет. 3, стр. 87–89, 2009.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    234. С. Контое, Л. Здравкович, Д. М. Поттс и К. О. Менкити, «Пример изучения сейсмического отклика туннеля», Канадский геотехнический журнал , том. 45, нет. 12, стр. 1743–1764, 2008.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    235. KH Cai and T. Yu, «Схема лечения и расчетный анализ обрушения туннеля Сима», Beifang Jiaotong , vol. 8, стр. 61–65, 2011.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    236. Х. Г. Денг и К. Ченг, «Закрытие заброшенных шахтных переулков пенобетоном», World Mining Express , vol. 34, стр. 18-19, 1992.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    237. F. Alan, H. Mike, and A. David, The Stabilization of Combe Down Stone Mines , Combe Down Stone Mines Project, Далвертон, Великобритания, 2011.

    238. X. J. Tan, WZ Chen , Лю Х.Ю. и др., «Комбинированная несущая система на основе пенобетона и U-образной стали для подземных выработок угольных шахт, подвергающихся большим деформациям», Тоннелестроение и подземная космическая техника , vol. 68, стр. 196–210, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    239. H. Wen, S. X. Fan, D. Zhang, W. F. Wang, J. Guo, Q. F. Sun, «Экспериментальное исследование и применение нового пенобетона для изготовления воздухонепроницаемых стен в угольных шахтах», , Достижения в Материаловедение и инженерия , том. 2018 г., идентификатор статьи 9620935, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    240. М. Х. Чжан, «Исследование заполнения специального туннеля природным газом», Shanghai Gas , vol. 3, стр. 1–4, 2018 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    241. Ч. Х. Даудинг и А. Розен, «Повреждение скальных туннелей в результате землетрясения», Журнал геотехнической и геоэкологической инженерии , том. 104, нет. 2, pp. 175–191, 1978.

      Просмотр по адресу:

      Google Scholar

    242. J. Tohda, H. Yoshimura, and L. M. Li, «Характерные особенности повреждения систем коммунальной канализации в районе Hanshin, Грунты и основания , vol. 36, стр. 335–347, 1996.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    243. К. Масару и М. Масакацу, «Повреждение водопроводных трубопроводов», Почвы и фундаменты , том. 36, стр. 325–333, 1996.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    244. Real Foam Cellular Concrete Applications , 2018 г., http://www.canadiancellularconcrete.com.

    245. М. Рейзи, С. А. Дадвар и А. Шариф, «Микроструктура и состав смеси неструктурного пенобетона с микрокремнеземом», Magazine of Concrete Research , vol. 69, нет. 23, стр. 1218–1230, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    246. С.-Ю. Чанг, К. Леманн, М. А. Эльрахман и Д. Стефан, «Характеристики пор и их влияние на свойства материала пенобетона, оцененные с использованием изображений микро-КТ и численных подходов», Прикладные науки , том. 7, нет. 6, с. 550, 2017.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    247. B. Šavija и E. Schlangen, «Использование материалов с фазовым переходом (PCM) для смягчения раннего термического растрескивания бетона: теоретические соображения», Construction and Building Materials , vol. 126, стр. 332–344, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    248. C. Liu, L. Xing, H. W. Liu et al., «Численное исследование проскальзывания сцепления между профильной сталью и переработанным бетонным заполнителем с полным коэффициентом замены», Прикладные науки , том. 10, нет. 3, ID статьи 887, 2020.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    249. Л. С. Ван, С. С. Сюй, Дж. Л. Цю и др., «Автоматическая система мониторинга в подземном инженерном строительстве: обзор и перспективы», Достижения в области гражданского строительства , ID статьи 3697253, 12 страниц, 2020.

      Посмотреть по адресу:

      Google Scholar

    250. З. П. Сонг, Г. Л. Ши, Б. Ю. Чжао, К. М. Чжао и Дж. Б. Ван, «Исследование устойчивости конструкции туннеля на основе двухшагового метода опережающего строительства», Достижения в области машиностроения , том. 12, нет. 1, 17 страниц, 2020 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    Copyright

    Copyright © 2020 Yanbin Fu et al. Эта статья находится в открытом доступе и распространяется в соответствии с лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

    Механическая характеристика легкого пенобетона

    На этой странице

    РезюмеВведениеРезультаты и обсуждениеВыводыКонфликты интересовБлагодарностиСсылкиАвторское правоСтатьи по теме

    Пенобетон обладает превосходными физическими характеристиками, такими как малый собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя, а за счет замены части цемента летучей золой способствует реализации принципов утилизации отходов. В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, утеплением фундаментов и звукоизоляцией черепицы. Однако в последние несколько лет пенобетон стал перспективным материалом конструкционного назначения. Проведена серия испытаний по изучению механических свойств пенобетонных смесей без золы-уноса и с содержанием золы-уноса. Кроме того, исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие. Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены в смеси. Увеличение плотности пенобетона приводит к снижению прочности на изгиб. При одинаковой плотности прочность на сжатие, полученная для смесей, содержащих летучую золу, примерно на 20% ниже по сравнению с образцами без летучей золы. Образцы, подвергшиеся 25 циклам замораживания-оттаивания, демонстрируют примерно на 15 % более низкую прочность на сжатие по сравнению с необработанными образцами.

    1. Введение

    Пенобетон известен как легкий или ячеистый бетон. Его обычно определяют как вяжущий материал с не менее 20% (по объему) механически увлекаемой пены в растворной смеси, где воздушные поры захватываются в матрице с помощью подходящего пенообразователя [1]. Он демонстрирует отличные физические характеристики, такие как малый собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя, а за счет замены части цемента золой-уносом способствует реализации принципов утилизации отходов [2]. При правильном подборе и дозировке компонентов и пенообразователя достигается широкий диапазон плотностей (300–1600 кг/м 3 ) может использоваться для различных конструкционных целей, изоляции или заполнения [2].

    Пенобетон известен уже почти столетие и был запатентован в 1923 году [3]. Первое комплексное исследование пенобетона было проведено в 1950-х и 1960-х годах Валоре [3, 4]. После этого исследования более подробная оценка состава, свойств и областей применения ячеистого бетона была сделана Руднаи [5], а также Шортом и Киннибургом [6] в 1919 году.63. В конце 1970-х – начале 1980-х годов были разработаны новые смеси, что привело к расширению коммерческого использования пенобетона в строительных конструкциях [7, 8].

    В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, утеплением фундаментов, звукоизоляцией [8]. Однако в последние годы пенобетон стал перспективным материалом и конструкционного назначения [7, 9], например, для стабилизации слабых грунтов [10, 11], базового слоя многослойных растворов для фундаментных плит [12]. , промышленные полы [13], а также инженерные сооружения для автомагистралей и метро [14, 15].

    В связи с растущими экологическими проблемами крайне важно исследовать экологичные материалы для более широкого спектра применений, чтобы предложить возможные альтернативы традиционным материалам.

    Пенобетон, являясь альтернативой обычному бетону, соответствует критериям принципов устойчивости строительных конструкций [16–18]. Общие принципы, основанные на концепции устойчивого развития применительно к жизненному циклу зданий и других строительных сооружений, определены в ISO 1539.2:2008. Во-первых, пенобетон расходует относительно небольшое количество сырья по отношению к количеству затвердевшего состояния. Во-вторых, при его производстве могут использоваться переработанные материалы, такие как летучая зола. Таким образом, пенобетон способствует утилизации отходов тепловых электростанций. В-третьих, пенобетон можно перерабатывать и использовать вместо песка в изоляционных материалах. Кроме того, производство пенобетона нетоксично, а продукт не выделяет ядовитых газов при воздействии огня. Наконец, это рентабельно не только на этапе строительства, но и на протяжении всего срока эксплуатации и обслуживания сооружения.

    Помимо вклада в утилизацию отходов тепловых электростанций, добавление золы-уноса улучшает удобоукладываемость свежей пенобетонной смеси и положительно влияет на усадку при высыхании [2, 19]. С одной стороны, единственным недостатком этой минеральной добавки является более низкая ранняя прочность раствора по сравнению со смесью без золы-уноса [20]. С другой стороны, доказано улучшение длительной прочности [19, 21].

    Несмотря на благоприятные и многообещающие прочностные и физические свойства, пенобетон по-прежнему используется в ограниченном масштабе, особенно в строительных целях. В основном это связано с недостатком знаний о его механических свойствах и небольшим количеством исследований его поведения при разрушении [22–28].

    Основной целью данной работы является исследование механических характеристик пенобетона различной плотности (400–1400 кг/м 3 ). Была проведена серия испытаний для проверки прочности на сжатие, модуля упругости, прочности на изгиб и характеристик деградации материала после циклов замораживания-оттаивания.

    2. Экспериментальная программа
    2.1. Подготовка образцов и состав бетонной смеси

    Материалами, использованными в этом исследовании, были портландцемент, летучая зола, вода и пенообразователь. Составы смеси представлены в табл. 1. Портландцемент промышленный ЦЕМ I 42,5 Р [29].], согласно PN-EN 197-1:2011. Ее химический состав и физические свойства, измеренные в соответствии с ПН-ЕН 196-6:2011 и ПН-ЕН 196-6:2011-4, приведены в таблицах 2 и 3. Во всех опытах использовали водопроводную воду. Прочность цемента на сжатие определяли по ПН-ЕН 196-1:2016-07 (табл. 3).

    Для улучшения удобоукладываемости и уменьшения усадки в некоторых смесях использовалась летучая зола. Используемая зола соответствовала требованиям PN-EN 450-1:2012. Его химический состав приведен в таблице 4.

    Для производства пены использовался коммерческий пенообразователь. Жидкий агент сжимали воздухом под давлением приблизительно 5 бар, чтобы получить стабильную пену с плотностью приблизительно 50 кг/м 3 . Готовили цементные массы с 2 ÷ 10 л жидкого пенообразователя на 100 кг цемента.

    Были использованы два различных типа бетонных смесей (один без летучей золы, а другой с летучей золой). Всего было изготовлено 10 смесей по пять образцов на одну бетонную смесь (табл. 1). Для всех смесей использовалось постоянное соотношение (включает воду и жидкий пенообразователь; c – содержание цемента). Он был основан на результатах Jones и McCarthy [7] и Xianjun et al. [30]. Целевые плотности затвердевшего пенобетона, которые должны быть получены в этом исследовании, составляли от 400 до 1400  кг/м 3 .

    Весь процесс производства пенобетона должен тщательно учитывать плотность смеси, производительность пенообразования и другие факторы для получения высококачественного пенобетона. Ключевыми факторами для получения стабильного пенобетона являлись нагнетание пенообразователя при стабильном давлении и постоянная скорость вращения смешения компонентов.

    Все образцы после отливки в стальные формы закрывали и хранили в сушильной камере при температуре 20 ± 1°C и влажности 95% в течение 24 часов. Затем образцы извлекали из форм и хранили в условиях окружающей среды (при 20 ± 1°C и влажности 60 ± 10%) в течение 28 или 42 дней перед испытанием.

    2.2. Испытания

    Пенобетон является относительно новым материалом, и в настоящее время не существует стандартизированных методов испытаний для измерения его физических и механических свойств. Поэтому в данном исследовании были адаптированы процедуры подготовки образцов и методы испытаний, обычно используемые для обычного бетона. Прочность на сжатие, модуль упругости и прочность на изгиб определяли в соответствии с рекомендациями: PN-EN 1239.0-3:2011 + AC:2012, Инструкция НИИ № 194/98, ПН-ЕН 12390-13:2014 и ПН-ЕН 12390-5:2011 соответственно. Плотность измеряли согласно PN-EN 12390-7:2011.

    Прочность на сжатие измерялась на стандартных кубах 150 × 150 × 150 мм согласно PN-EN 12390-3:2011 + AC:2012. Норма нагружения принята согласно PN-EN 772-1:2015 + A1:2015 как для элементов кладки из ячеистого бетона.

    Модуль упругости определяли согласно Инструкции НИИ 194/98 и ПН-ЕН 12390-13:2014-02 с цилиндрическими образцами размерами 150 × 300 мм. Скорость нагружения составляла 0,1 ± 0,05 МПа/с в соответствии с PN-EN 679:2008 для блоков кладки из ячеистого бетона. Два тензодатчика электрического сопротивления с измерительной длиной 100 мм были приклеены к двум противоположным сторонам образцов на средней высоте. Для оценки модуля упругости регистрировали характеристику «напряжение-деформация».

    Прочность на изгиб была испытана на трехточечном изгибе с балками 100 × 100 × 500 мм в соответствии с PN-EN 12390-5:2011. Номинальное расстояние между опорами составляло 300 мм. Ролики допускали свободное горизонтальное перемещение. Образцы нагружались с постоянной скоростью смещения 0,1 мм/мин как оптимальная величина, определенная экспериментально.

    Характеристики деградации при циклах замораживания-оттаивания оценивали на стандартных кубиках 150 × 150 × 150 мм. Прочность на сжатие определяли по методике, описанной выше. Испытательная кампания состояла из 25 циклов замораживания и оттаивания. Каждый цикл включал охлаждение образцов до температуры -18°С в течение 2 ч. Затем образцы выдерживали в замороженном виде в течение 8 ч при температуре –18 ± 2°С и оттаивали в воде при температуре +19°С.°C ± 1°C в течение 4 ч. Образцы сравнения хранились погруженными в воду в качестве эталонов.

    3. Результаты и обсуждение
    3.1. Кажущаяся плотность

    Дозировка пенообразователя сильно влияет на плотность смеси и затвердевшего пенобетона. На рис. 1 представлена ​​зависимость между дозировкой пенообразователя и кажущейся плотностью затвердевшего пенобетона для образцов без золы-уноса (ЗЦ) и других с золой-уносом (ЗЦА). Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены и составом цементного теста и воздушных пустот в свежей смеси. Увеличение содержания пены сопровождается увеличением объема свежего бетона, что приводит к уменьшению плотности затвердевшего пенобетона. Можно заметить, что существуют экспоненциальные зависимости для образцов FC и FCA. Кроме того, результаты, полученные в FC, показывают уровень плотности примерно на 20% выше, чем в FCA. Это можно объяснить тем, что в образцах, содержащих летучую золу, процесс твердения замедлен. Физическая реакция между летучей золой и воздушными порами приводит к увеличению количества воздушных пор, захваченных смесью. Также установлено, что смеси с содержанием пенообразователя более 10 литров на 100 кг цемента дают нестабильную смесь. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 1.9.0005

    3.2. Прочность на сжатие

    Кубические образцы пенобетона, испытанные на сжатие, демонстрируют механизм разрушения, аналогичный обычному бетону. Для всех образцов наблюдалась типичная коническая картина разрушения после разрушения (рис. 2).

    Прочность на сжатие пенобетона без золы (FC) и пенобетона с добавкой золы-уноса (FCA) в зависимости от кажущейся плотности представлена ​​на рисунке 3. Можно заметить, что существуют экспоненциальные зависимости как для FC, так и для FCA. ; однако, по-видимому, существует разница между показателями прочности, полученными для образцов FC и FCA. Образцы без золы, по-видимому, демонстрируют более высокую прочность, чем смеси, содержащие золу. Это связано с тем, что процесс твердения замедляется из-за наличия летучей золы [20]. Кроме того, эта разница увеличивается вместе с плотностью. Полученные значения прочности на сжатие соответствуют результатам работ других авторов [31–34]. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 3.9.0005

    3.3. Модуль упругости

    Образцы цилиндрического пенобетона, испытанные на сжатие, имеют механизм разрушения, аналогичный обычному бетону. Для всех образцов наблюдалась типичная коническая картина разрушения после разрушения (рис. 4). Зависимости напряжения от деформации цилиндрических образцов представлены на рис. 5. На графиках показаны зависимости в диапазоне 0,2 МПа до разрушения согласно ПН-ЕН 12390-13:2014-02.

    На рис. 6 показаны зависимости между модулем упругости пенобетона и его плотностью. Можно заметить, что существуют экспоненциальные зависимости для FC и FCA. Образцы без летучей золы, по-видимому, имеют более высокий модуль упругости, чем смеси, содержащие летучую золу [35]. Полученные значения модуля упругости соответствуют результатам работ Олдриджа [8].

    3.4. Прочность на изгиб

    На рисунке 7 представлена ​​зависимость между плотностью пенобетона и прочностью на изгиб. Испытания проводились на образцах без летучей золы. На рис. 7 приведены также результаты экспериментов, проведенных авторами и опубликованных в [23–28]. Можно отметить снижение предела прочности при изгибе с уменьшением плотности пенобетона. Значения прочности на изгиб соответствуют результатам работ Mydin и Wang [31] и Soleymanzadeh и Mydin [36].

    3.5. Характеристики разложения при циклах замораживания-оттаивания

    На рис. 8 показаны результаты прочности на сжатие пенобетона после 25 циклов замораживания-оттаивания в зависимости от плотности. В качестве справки результаты для необработанных образцов показаны на рис. 8. Обработка образцов методом замораживания-оттаивания оказывает лишь незначительное влияние на прочность пенобетона на сжатие. Прочность, полученная для образцов, подвергнутых циклам замораживания-оттаивания, показала примерно на 15% более низкие значения. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 8.9.0005

    4. Выводы

    Пенобетон может иметь гораздо более низкую плотность (от 400 до 1400 кг/м 3 ) по сравнению с обычным бетоном. Была проведена серия испытаний для изучения механических параметров пенобетона: прочности на сжатие, прочности на изгиб и модуля упругости. Кроме того, было исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие.

    Основные выводы, которые можно сделать из этого исследования, следующие: (i) Дозировка пенообразователя влияет на плотность смеси и затвердевшего пенобетона. Плотность пенобетона сильно коррелирует с содержанием пены в смеси. (ii) Прочность на сжатие, модуль упругости и прочность на изгиб уменьшаются с уменьшением плотности пенобетона; для описания этих взаимосвязей были предложены полиномиальные функции. (iii) Прочность на сжатие и модуль упругости пенобетона были немного снижены при добавлении 5% золы-уноса. (iv) Прочность на сжатие пенобетона, подвергнутого замораживанию-оттаиванию. тесты показывают значения только примерно на 15% ниже по сравнению с необработанными образцами.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Благодарности

    Работа выполнена при поддержке продолжающегося исследовательского проекта «Стабилизация слабого грунта путем нанесения слоя пенобетона, используемого в контакте с грунтом» (LIDER/022/537/L-4/NCBR/2013), финансируемого Национальный центр исследований и разработок в рамках программы ЛИДЕР. Авторы выражают признательность лаборанту Альфреду Кукельке за навыки и приверженность делу, без которого настоящее исследование не могло бы быть успешно завершено.

    Справочные материалы
    1. С. Ван Дейк, Пенобетон: взгляд голландца , Британская цементная ассоциация, Блэкуотер, Великобритания, 1992. , «Классификация исследований свойств пенобетона», Cement and Concrete Composites , vol. 31, нет. 6, стр. 388–396, 2009 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    2. Р. К. Валоре, «Ячеистый бетон, часть 1, состав и методы производства», ACI Journal Proceedings , vol. 50, нет. 5, стр. 773–796, 1954.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    3. Р. К. Валоре, «Физические свойства ячеистого бетона, часть 2», ACI Journal Proceedings , vol. 50, нет. 6, стр. 817–836, 1954.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    4. Г. Руднаи, Легкие бетоны , Академикиадо, Будапешт, Венгрия, 1963.

    5. A. Short and W. Kinniburgh, Lightweight Concrete , Asia Publishing House, Дели, Индия, 1963. Журнал исследований бетона , том. 57, нет. 1, стр. 21–31, 2005 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    6. Д. Олдридж, «Введение в пенобетон: что, почему, как?» в Использование пенобетона в строительстве: материалы международной конференции, Данди, Шотландия, Великобритания , K. Ravindra, D. Moray и M. Aikaterini, Eds., vol. 5, стр. 1–14, июль 2005 г.

      Посмотреть по адресу:

      Google Scholar

    7. Р. К. Дхир, М. Д. Ньюлендс и А. Маккарти, Использование пенобетона в строительстве , Томас Телфорд, Лондон, Великобритания 2005.

    8. М. Друса, Л. Федорович, М. Кадела, В. Шерфель, «Применение геотехнических моделей в описании композиционного пенобетона, используемого в контактном слое с грунтом», в Материалы 10-й Словацкой геотехнической конференции по геотехническим проблемам инженерных сооружений , Братислава, Словакия, май 2011 г. Беднарски, «Моделирование поведения пенобетона для слоистых конструкций, взаимодействующих с грунтом», в Технические заметки Катовицкой технологической школы , том. 6, стр. 73–81, Катовицкая технологическая школа, Катовице, Польша, 2014 г.

      Посмотреть по адресу:

      Google Scholar

    9. Хулимка Ю., Кноппик-Врубель А., Крживон Р., Рудишин Р. Возможности конструкционного использования пенобетона на примере плитного фундамента. Proceedings of the 9th Central European Congress on Concrete Engineering , стр. 67–74, Вроцлав, Польша, июнь 2013 г. слой как подконструкция промышленного бетонного пола» Procedia Engineering , vol. 161, стр. 468–476, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    10. М. Р. Джонс и А. Маккарти, «Поведение и оценка пенобетона для строительных применений», в Использование пенобетона в строительстве: материалы Международной конференции, Данди, Шотландия, Великобритания , К. Равиндра , D. Moray и M. Aikaterini, Eds., vol. 5, стр. 61–88, июль 2005 г.

      Посмотреть по адресу:

      Google Scholar

    11. В. Тянь, Л. Ли, С. Чжао, М. Чжоу и Н. Вамг, «Применение пенобетона в дорожном строительстве», в материалах Международной конференции по транспортному машиностроению, ASCE , стр. 2114–2120, июль 2009 г.

      Посмотреть по адресу:

      Google Scholar

    12. К. К. Б. Сирам и К. Арджун Радж, «Бетон + зеленый = пенобетон», International Journal of Civil Engineering and Technology , vol. 2013. Т. 4. С. 179–184.

      Просмотр по адресу:

      Google Scholar

    13. А. С. Мун и В. Варгезе, «Устойчивое строительство с использованием пенобетона как зеленого строительного материала», Международный журнал современных тенденций в области инженерии и исследований , том. 2, pp. 13–16, 2014.

      Посмотреть по адресу:

      Google Scholar

    14. А. С. Мун, В. Варгезе и С. С. Вагмаре, «Пенобетон как зеленый строительный материал», Международный журнал исследований в Инженерия и технологии , том. 2, pp. 25–32, 2015.

      Просмотр по адресу:

      Google Scholar

    15. П. Чиндапрасирт, С. Хомвуттивонг и В. Сирививатнанон, «Влияние крупности золы-уноса на прочность, усадку при высыхании и стойкость к сульфатам» смешанного цементного раствора», Исследование цемента и бетона , том. 34, нет. 7, стр. 1087–1092, 2004.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    16. П. Чиндапрасирт и С. Рукзон, «Прочность, пористость и коррозионная стойкость тройной смеси портландцемента, золы рисовой шелухи и раствора летучей золы», Строительство и строительные материалы , том. 22, нет. 8, стр. 1601–1606, 2008.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    17. Э. П. Кирсли и П. Дж. Уэйнрайт, «Влияние высокого содержания летучей золы на прочность пенобетона на сжатие», Cement and Concrete Research , vol. 31, нет. 1, стр. 106–112, 2001.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    18. Н. А. Рахман, З. М. Джайни, Н. Н. Захир, «Энергия разрушения пенобетона с помощью испытаний на трехточечный изгиб на образцах балок с надрезом», Journal of Engineering and Applied Sciences , vol. 2015. Т. 10. С. 6562–6570. зубчатые балки // Материалы 7-й Научно-технической конференции по проблемам материалов в строительстве МАТБУД’2015. 2015. Т. 108. С. 349–354.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    19. М. Козловски, М. Кадела и М. Гвуздз-Ласонь, «Численный анализ разрушения пенобетонной балки с использованием метода XFEM», Applied Mechanics and Materials , vol. 837, стр. 183–186, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    20. М. Кадела, А. Чинцио и М. Козловски, «Анализ деградации балки из пенобетона с надрезом», Applied Mechanics and Materials , vol. 797, стр. 96–100, 2016.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    21. А. Чинцио, М. Козловски, М. Кадела и Д. Дудек, «Численный анализ деградации пенобетонной балки», в материалах 13-й Международной конференции по новым тенденциям в статике и динамике зданий. , Словацкий технологический университет, , Братислава, Словакия, октябрь 2015 г. балки», в Материалы 13-й Международной конференции по новым тенденциям в статике и динамике зданий, Словацкий технологический университет , Братислава, Словакия, октябрь 2015 г. , «Экспериментальное и численное исследование разрушения пенобетона на основе испытания балок на трехточечный изгиб с начальным надрезом», в Труды Международной конференции по машиностроению, гражданскому строительству и материаловедению , Барселона, Испания, август 2015 г.

      Посмотреть по адресу:

      Google Scholar

    22. Технический паспорт CEM I 42. 5 R, http://www.gorazdze.pl.

    23. T. Xianjun, C. Weizhong, H. Yingge и W. Xu, «Экспериментальное исследование сверхлегкого (<300 кг/м3) пенобетона», Достижения в области материаловедения и инженерии , vol. 2014 г., идентификатор статьи 514759, 7 страниц, 2014 г.

      Посмотреть по адресу:

      Сайт издателя | Академия Google

    24. Мыдин М.А.О., Ван Ю.К. Механические свойства пенобетона при воздействии высоких температур // Строительные материалы . . Вып. 26, нет. 1, стр. 638–654, 2012 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    25. K. Jitchaiyaphum, T. Sinsiri, and P. Chindaprasirt, «Ячеистый легкий бетон, содержащий пуццолановые материалы», Procedia Engineering , vol. 2011. Т. 14. С. 1157–1164.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    26. М. А. Сиппл, «Высокопрочный самоуплотняющийся пенобетон. начальный тезис», 2009 г., https://www.researchgate.net/publication/265483433_Structural_Strength_Self-Compacting_Foam_ConcreteACME, UNSW@ADFA.

      Просмотр по адресу:

      Google Scholar

    27. А. К. Марунмале и А. К. Аттар, «Проектирование, разработка и испытание стены из ячеистого легкого бетона (CLC), построенной на связке «крысиная ловушка», Current Trends in Technology and Sciences , том. 2014. Т. 3. С. 331–336.

      . Просмотр по адресу:

      Google Scholar. Хрупкие матричные композиты 11-Материалы 11-го Международного симпозиума по хрупким матричным композитам BMC 2015, Институт фундаментальных технологических исследований PAS , стр. 489–496, Варшава, Польша, сентябрь 2015 г., ISBN: 978-838968796-8.

      Просмотр по адресу:

      Google Scholar

    28. Солейманзаде С. , Мыдин М.А.О. Влияние высоких температур на прочность на изгиб пенобетона, содержащего летучую золу и полипропиленовое волокно, International Journal of Engineering , vol. 26, нет. 2, стр. 117–126, 2013 г.

      Посмотреть по адресу:

      Сайт издателя | Google Scholar

    Copyright

    Copyright © 2018 Марцин Козловски и Марта Кадела. Эта статья находится в открытом доступе и распространяется в соответствии с лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

    Производство пенобетона — Машины для производства пенобетона

    В 20 веке потребность в строительных материалах была в кирпиче и бетоне. Ячеистый бетон в то время только начинал разрабатываться. Сейчас производство пенобетона занимает лидирующие позиции в строительной отрасли.

    Пенобетон История

    Толщина кирпичной стены была на тот момент около 60см. Изготовление пенобетона уменьшило его до 40-50 см, и это было большим достижением, которое сразу же снизило затраты и трудоемкость и энергоемкость строительной отрасли.

    Из этого бетона стали делать крупнопанельные блоки и стеновые панели размером «на комнату»: информация о крупнопанельных московских Черемушках прогремела на всю страну. Там же, где не было легкого бетона, пытались делать кирпичные панели.

    Строительный бум, основу которого составляли крупнопанельные пятиэтажки (заклятые ныне «хрущевки»), был большим благом для народа. И она не приобрела бы таких масштабов, если бы не отечественные разработки в области бетонов, в первую очередь великого ученого Н.А. Попова.

    Легкий бетон стал возможен благодаря использованию пористых заполнителей, например, керамзита – обожженных глиняных шариков, а также других подобных материалов: термореактивных, шунгизитовых и др. Их смешивали с обычным раствором и формовали панели. Все бы ничего, но стали появляться новые марки бетона – более эффективные материалы – конструкционно-теплоизоляционные ячеистые бетоны, что позволило уменьшить толщину стен до 28-35 см.

    Реакция последовала незамедлительно: появился легкий бетон с пористым цементным камнем, достаточно легкий и относительно «теплый». Порозовали его так же, как и ячеистый бетон – или пенобетон, или газогенераторы. Но при этом могла возникнуть проблема: действительно ли это легкий бетон, а не ячеистый бетон с пористым заполнителем, который тянул за собой целую вереницу вопросов. И нужен ли пористый заполнитель для ячеистых бетонов? И если он вам нужен, он есть? А если не любой, то каким требованиям он должен соответствовать? И сколько надо вводить этот «не любой» наполнитель? …

    Производство пенобетона: экономика

    Теоретически возможна ситуация, когда и прочность, и теплопроводность зерна заполнителя идентичны окружающему ячеистому бетону; а несущая способность и термическое сопротивление строительного элемента из такого материала не должны зависеть ни от количества вводимого наполнителя, ни от взаимного расположения его зерен. Такой наполнитель мы называем адекватным. Единственным фактором, определяющим степень целесообразности внедрения такого наполнителя, будет экономика.

    Межзерновая пустотность сферического монофракционного заполнителя в долях объема составляет около 0,5. Следовательно, в одном кубометре пенобетона с поризованным цементным камнем содержится не менее половины кубометра ячеистого бетона и кубометра заполнителя. Следовательно, выполнение критерия экономичности требует, чтобы товарная стоимость кубометра заполнителя была вдвое меньше стоимости ячеистого бетона. Это первое условие целесообразности введения в пенобетон пористого заполнителя.

    К этому нужно добавить дополнительные расходы на хранение, на внутренний транспорт, на контроль качества, на дозирование, на приобретение, установку и обслуживание дополнительного оборудования. Каждый из компонентов бетона и каждая новая единица оборудования могут стать источником непредвиденных ошибок, поломок и убытков.

    Отдельно нужно сказать об очень важном в современных условиях расходе – это энергозатраты. Известно, что для ускорения твердения и, следовательно, для повышения экономичности изделия из легких бетонов подвергают гидротермической обработке – пропариванию. При этом энергия затрачивается не на химические процессы гидратации цемента (они идут с выделением тепла), а только на повышение температуры материала с учетом его теплоемкости, поэтому линия для изготовления пенобетон энергоемкий. При этом энергозатраты практически не зависят от наличия или отсутствия в бетоне пористого заполнителя. Но ведь наполнитель когда-то уже получил свою (и очень существенную) порцию энергии при изготовлении (при обжиге), а здесь, в бетоне, снова нагревается.

    Производство пенобетона: теория

    При теоретическом рассмотрении возможного адекватного заполнителя предполагается, что все его зерна совершенно одинаковы как по прочности, так и по теплопроводности, каждое зерно идентично окружающему бетону. Но на практике этого никогда не происходит. Даже если средние показатели зерна в этой партии идеально совпадали с характеристиками бетона, то среди отдельных зерен будут встречаться как менее прочные, так и более «холодные». И средние цифры варьируются от партии к партии. Следовательно, при введении в ячеистый бетон настоящего пористого заполнителя он неизбежно будет страдать как своими прочностными, так и теплозащитными свойствами.

    Если в среднем зерна заполнителя «холоднее» ячеистого бетона, то для восстановления расчетной теплостойкости изделий потребуется одно из двух: либо увеличить толщину изделия, либо уменьшить плотность из ячеистого бетона. В первом случае увеличится расход материальных, трудовых и энергетических ресурсов на добычу, доставку, хранение и переработку сырья, потребуется полная замена парка форм, а возможно и кранов, расширение пропарочных камер , при снижении производительности завода (в пересчете на квадратные метры ограждения) возрастут затраты на транспортировку и монтаж готовой продукции, увеличатся площади строительных и приусадебных складов.

    Во втором случае снизится прочность бетона, придется в лучшем случае увеличить расход цемента или интегрировать режимы термообработки, а если это не поможет, то надо либо закрыть завод или отказаться от введения пористого заполнителя. Такой же финал ожидается и тогда, когда зерна заполнителя в среднем окажутся «теплыми», но недостаточно прочными.

    Производство пенобетона: практика

    В настоящее время практически на всех крупных заводах, освоивших изготовление пенобетона, плотность изготавливаемых конструкционных и теплоизоляционных изделий составляет 600 кг/м3 при прочности 3,5 МПа (такие показатели получают на неавтоклавном бетоне) — это типичная технология, внедренная в производство пенобетона и других ячеистых бетонов. При наличии пористого заполнителя насыпной плотностью не более 300 кг/м3, обеспечивающего достижение прочности бетона не ниже заданной, не исключается возможность его применения.

    Некоторые сведения по этому вопросу дает государственный нормативный документ – СНиП II-3-79**, согласно которому минимальная плотность легких бетонов на пористом заполнителе (керамзите) с пористым цементным камнем (без указания прочности бетон) составляет 500 кг/м3 (следует отметить, что по этому же документу минимальная плотность ячеистого бетона составляет 300 кг/м3).

    Принимая, что межзерновая пустотность заполнителя составляет фактически 0,5 объема и заполнена ячеистым бетоном в количестве 600 кг/м3 (что обеспечивает требуемую прочность), насыпная плотность заполнителя должна быть фактически не более 300 кг/м3. Материал с такой низкой плотностью хоть и встречается в рассматриваемом документе, но только в разделе теплоизоляционных заполнителей, а не заполнителей для бетона.

    Пористое зерно заполнителя высасывает воду из окружающего ячеистого бетона, в результате чего бетон уплотняется, вокруг зерна формируется упрочненный слой с вариаторной макроструктурой, способный воспринимать повышенные механические нагрузки.

    В случае обычного, относительно тяжелого зерна керамзита этот эффект едва заметен. Однако очень пористое зерно с повышенными гиалофильными свойствами может создать более прочную оболочку, чем само зерно. При этом будет обеспечена необходимая несущая способность и необходимая теплозащита.

    Есть вопросы или комментарии?

    Производство современных строительных материалов – это не обязательно большой производственный цех, высокие трубы и облака загрязнений. И оборудование для этого производства тоже не обязательно должно производиться гигантами машиностроения… Не умаляя достоинств других строительных материалов, хотелось бы обратить внимание на пенобетон. Разработанный еще в начале 30-х годов прошлого века, сейчас этот материал переживает второе рождение.

    Наши технические разработки, малочисленность персонала и практически полное отсутствие накладных расходов делают стоимость нашего оборудования на 30-40% ниже стоимости аналогичных установок для пенобетона, реализуемых сегодня на рынке строительной техники. Количество деталей и средств автоматизации сведено к минимуму, поэтому в установке отсутствуют узлы, создающие опасность какой-либо частой поломки. Будем рады ответить на все Ваши вопросы и предложения.

    Производство и контроль качества ячеистого бетона

    Производство и контроль качества

    Ячеистый бетон можно производить разными способами. Для любого конкретного применения размер проекта, тип проекта и требуемые свойства материалов определяют наилучший метод производства и последующие требования к оборудованию. Независимо от проекта и требований к материалам, использование правильного оборудования и исходных материалов, а также надлежащие меры контроля качества обеспечат успех вашего проекта.

    Методы производства ячеистого бетона

    Серийный способ производства

    Первый способ производства ячеистого бетона также является самым простым методом, то есть серийным способом производства. Как подразумевается, ячеистый бетон производится партиями. Базовая суспензия готовится в смесителе, а затем добавляется внешне образующаяся пена. Типы смесителей могут сильно различаться, включая коллоидные смесители и смесители для транспортировки готовых смесей. Даже периодическое смешивание в ведре с помощью ручного миксера может дать хорошие результаты.

    Для достижения желаемой плотности необходимо выполнить расчет состава смеси, чтобы определить, сколько пены добавить к заданному объему основного раствора. Требуемый объем пены вместе с выходной мощностью пеногенератора затем используется для расчета времени, в течение которого пена должна впрыскиваться в смеситель. Наш калькулятор состава смеси является отличным инструментом для расчета пропорций дозы пены и времени.

    Пена обычно добавляется в смеситель во время перемешивания и всегда должна добавляться в последнюю очередь. Важно, чтобы другие материалы были тщательно перемешаны перед добавлением пены в смеситель.

    После добавления необходимого количества пены миксер продолжает перемешивание до тех пор, пока пена не станет полностью однородной. (При использовании коллоидного смесителя пену нельзя смешивать с помощью смесительного насоса с высоким усилием сдвига, а ее следует добавлять во вторичный резервуар.)

    После того, как ячеистая суспензия гомогенно перемешана, следует начинать укладку материала. Часто задаваемый вопрос: «Как долго вы можете оставлять перемешивание клеточной суспензии?» Ответ заключается в том, что существует слишком много факторов, чтобы дать универсальный ответ. Учитываются качество пены, плотность ячеек, тип смесителя, состав основной смеси суспензии и температура окружающей среды.

    Предполагая, что любой из упомянутых факторов не сильно отличается от нормы, во многих случаях смесь можно оставить в смесителе минимум на 30 минут, а во многих случаях и намного дольше, прежде чем ее нужно будет поместить. Если ячеистая смесь будет оставаться в смесителе в течение длительного периода времени, лучше всего позволить материалу продолжать перемешивание, хотя и с медленной скоростью.

    Вообще говоря, процесс периодического смешивания лучше подходит для небольших производственных потребностей, а также требует меньших инвестиций в оборудование для получения ячеистого бетона. В периодическом процессе легче контролировать плотность без большого опыта. Кроме того, регулированием плотности может быть легче управлять, если требуемые объемы материала меньше или во время укладки требуется много пусков и остановок.

    Непрерывный метод производства

    Второй метод производства ячеистого бетона известен как непрерывный производственный процесс. Во многих случаях ячеистый бетон или пеноцемент необходимо закачивать к месту укладки. Если используется насос, то пену можно впрыскивать и смешивать прямо в шланге насоса, а не в смесителе.

    Этот метод производства может обеспечить множество преимуществ, включая более высокую производительность, более высокие объемы производства для любого заданного размера смесителя и возможность регулировать плотность ячеек «на ходу».

    Сравнение двух методов производства с проектом, требующим 100 ярдов³ (76,46 м³) материала 30 PCF, выглядит следующим образом: При использовании метода серийного производства для доставки и смешивания необходимого количества материала потребуется 10 грузовиков для готовой смеси. Каждый грузовик должен был доставить примерно три ярда³ (2,29 м³) базовой суспензии, к которой будет добавлено семь ярдов³ (5,35 м³) пены. Кроме того, на месте потребуется отдельный насос, предполагая, что материал необходимо будет перекачивать в точку размещения.

    При использовании непрерывного метода потребуется всего четыре грузовика, каждый из которых доставляет примерно семь с половиной ярдов³ (5,73 м³) основного навоза. Полные грузовики с раствором выгружаются из смесителя в бункер насоса для ячеистого бетона, а затем впрыскивается и смешивается в потоке 70 ярдов³ (53,52 м³) пены, необходимой для получения 100 ярдов³ (76,46 м³) материала 30 PCF. пока материал перекачивается.

    Непрерывный производственный процесс представляет собой «динамический» производственный процесс, означающий, что все входные данные, т. е. скорость перекачивания шлама, производительность пены, давление в системе и трубопроводе, могут изменяться, а также объем и плотность перерабатываемого материала. произведенное изменится.

    Из-за этих факторов этот процесс, как правило, требует больше знаний и опыта, и, что наиболее важно, оборудования, предназначенного для данного типа производства. Однако при наличии соответствующей подготовки и оборудования оператор может быстро освоить метод непрерывного производства и воспользоваться им.

    Контроль качества ячеистого бетона

    При любом методе производства существует ряд факторов контроля качества, которые влияют на успех производства. Ниже приведены некоторые из универсальных рекомендаций, которым следует следовать.

    Приготовление базовой суспензии

    Базовую суспензию необходимо хорошо перемешать. Необходимо провести тщательное перемешивание, чтобы убедиться, что все сухие материалы хорошо диспергированы в растворе перед смешиванием с пеной.

    При серийном производстве в базовом растворе должны быть смешаны все вяжущие материалы и вода перед добавлением пены в смеситель. Если какие-либо сухие материалы были добавлены после пены, весьма вероятно, что после контакта сухого материала с пеной пузырьки пены лопнут.

    При любом производстве ячеистого бетона при приготовлении суспензии в смесителе барабанного типа необходимо следить за тем, чтобы порошок не «слипался» на стенках барабана или не «насыпался» на дне барабана.

    Хорошим индикатором того, что раствор недостаточно хорошо перемешан, являются шарики портландцемента или агломерация портландцемента в растворе. Часто это можно наблюдать, когда суспензия выгружается из смесителя.

    В зависимости от размера агломератов они могут быть видны или их можно обнаружить только при ощупывании суспензии руками. Когда происходит агломерация, это указывает на то, что вяжущие материалы плохо диспергированы и могут привести к снижению прочности ячеистого бетона на сжатие. Использование понизителей воды, пластификаторов или дисперсионных добавок может решить эту проблему.

    Несмотря на то, что при использовании каких-либо добавок необходимо провести испытания на совместимость, чтобы убедиться, что добавка не оказывает неблагоприятного воздействия на пену. Наихудшим сценарием может быть то, что добавочная смесь вызовет разрушение пузырьков пены, в результате чего ячеистая суспензия разрушится либо в смесителе, либо после его размещения.

    Использование Fresh Portland

    Портланд имеет срок годности. Если портландцемент оставить без использования слишком долго, может начаться процесс гидратации, что приведет к получению пористого бетона. Это наиболее заметно с пакетированными материалами, которые можно приобрести в розничных торговых точках, хотя это действительно происходит, когда портландцемент хранится где-либо слишком долго.

    Обнаружение твердых шариков порошка портландцемента в мешке или контейнере для хранения является ключевым показателем того, что портландцемент слишком стар, чтобы его можно было надежно использовать для производства. В случае использования ячеистый материал может иметь прочность ниже ожидаемой или может также привести к образованию суспензии, которая не затвердеет до того, как произойдет некоторое разрушение ячеистого материала.

    Использование высококачественных пенообразователей

    Хороший пеногенератор, скорее всего, сможет сделать то, что кажется хорошей пеной для использования в ячеистом бетоне — с большинством пенообразователей — даже средством для мытья посуды.

    Однако, если пенообразователь не предназначен для того, чтобы выдерживать суровые условия процесса смешивания и процесса укладки (особенно перекачивания), ячеистый материал во многих случаях разрушает или раздавливает пузырьки пены в процессе производства и укладки. Меньшая плотность и более высокая подъемная сила усугубляют проблему.

    Ключевым показателем хорошего пенообразователя из ячеистого бетона является способность выдерживать большие нагрузки. ASTM C869 представляет собой набор стандартов для пенообразователей, используемых в производстве ячеистых бетонов. Стандарт предназначен для проверки долговечности пены и ее способности оставаться неповрежденной на протяжении всего процесса смешивания и перекачки.

    Как минимум рекомендуется использовать сертифицированную ASTM пену для производства ячеистого бетона, хотя это не означает, что все пены, соответствующие стандарту, одинаковы.

    Как упоминалось ранее, высота подъема является хорошей мерой качества пены, и все пены, сертифицированные ASTM, не одинаковы по этому показателю. При прочих равных, чем большего подъема можно добиться, тем качественнее пенообразователь.

    Использование качественного оборудования для производства пены

    Вообще говоря, чем меньше пузырь пены, тем выше долговечность ячеистого раствора во время производства и укладки.

    Хорошее оборудование для производства пены производит пену с консистенцией крема для бритья и очень маленьким размером пузырьков. Кроме того, хороший пеногенератор позволит оператору контролировать выход пены, плотность пены и соотношение воды и концентрата, а также обеспечивать постоянство при каждом использовании.

    При выборе оборудования для производства пены, как и при покупке любого другого оборудования, учитывайте общее качество сборки и конструкции. Оборудование, рассчитанное на длительный срок службы и удобство обслуживания, имеет решающее значение для обеспечения год за годом стабильной производительности и качества пены.

    Определение и поддержание надлежащего соотношения воды и концентрата для пены и поддержание плотности пены

    Несмотря на отсутствие промышленного стандарта, большинство производителей пены рекомендуют соотношение воды и концентрата 40:1. Это может варьироваться в зависимости от пены. Тем не менее, Richway рекомендует это в качестве отправной точки с нашим концентратом CMX.

    Кроме того, мы рекомендуем начальную точку для плотности пены три фунта на кубический фут. Опять же, это может варьироваться в зависимости от производителя. Как правило, соотношение 40:1 и плотность 30PCF позволяют производить ячеистые бетонные смеси любой конструкции. Однако, в зависимости от применения, соотношение воды и концентрата и плотность пены могут незначительно варьироваться.

    Если вы думаете о пенном пузыре просто как о воздухе, который содержится в пленке поверхностно-активного вещества и воды, то поверхностно-активное вещество придает пузырю прочность и позволяет пузырю выжить в процессе смешивания и размещения. Если используется более высокое отношение воды к концентрату, тем тоньше будет стенка пузыря. Это также относится к пене меньшей плотности.

    При этом во многих случаях можно успешно использовать более высокое соотношение воды и концентрата и более низкую плотность пены даже в материалах с меньшей плотностью (например, 30 PCF) и в более сложных условиях (т. высоты подъема). При тщательном контроле процесса и тестировании пользователи, скорее всего, подтвердят это.

    Подготовка, обращение и разбивание испытательных цилиндров

    Как и в случае любого вяжущего материала, изготовление образцов для испытаний является важным компонентом контроля качества. ASTM 495 — это стандарт, определяющий правильную процедуру изготовления испытательных цилиндров из ячеистого бетона.

    Здесь следует отметить несколько существенных моментов. При изготовлении цилиндров из ячеистого бетона не раскалывать материал. Заполните цилиндр наполовину и постучите по бокам, чтобы удалить все захваченные карманы воздуха. Когда он наполнится, еще раз постучите по бокам и снимите верхнюю часть, прежде чем закрывать.

    После изготовления баллонов дайте им постоять не менее 24 часов перед погрузкой-разгрузкой или транспортировкой. Они должны быть размещены в месте, защищенном от вибраций, и в идеале там, где можно несколько контролировать температуру, например, в холодильнике. Если с ними слишком сильно обращаться/вибрировать во время начального отверждения, пузырьки могут лопнуть и вызвать разрушение материала, или могут возникнуть микронапряжения, что приведет к более низким, чем ожидалось, результатам прочности.

    Баллоны должны быть достаточно высушены на воздухе перед испытанием на сжатие. Испытание цилиндра, который все еще содержит влагу, даст низкую прочность на разрыв.

    Кроме того, сушка цилиндров в печи должна производиться только для проверки сухого веса, а не для испытания на сжатие. Обычно мы рассчитываем, что разница в весе между влажным и сухим материалом составляет около 5% снижения плотности. Тем не менее, это следует проверить для любого заданного состава смеси, так как различия в расходе материалов приведут к различиям между влажным и сухим весом.

    Прежде чем баллоны будут разбиты, важно подготовить их с помощью укупорочного состава. Это помогает обеспечить сквозную прямоугольность и устраняет любые дефекты краев, возникшие в процессе извлечения из формы.

    Для получения точных результатов важно использовать машину для испытаний на сжатие подходящего размера. Хорошим ориентиром является пресс, рассчитанный на максимальную производительность, в 10 раз превышающую ожидаемую прочность материала.

    В случае испытания цилиндров 3 X 6 из материала 30 PCF мы ожидаем предел прочности на сжатие в диапазоне 200–250 фунтов на квадратный дюйм или общее усилие на сжатие 1428–1785 фунтов. Так что в идеале пресс для разрыва цилиндров с максимальной мощностью около 18 000 фунтов. будет использоваться. Можно также использовать прессы меньшего размера, если они не недооценены.

    Мониторинг плотности

    Поскольку прочность ячеистого бетона напрямую связана с плотностью, чрезвычайно важно проверять плотность материала в рамках любого конкретного проекта.

    Во многих случаях в спецификациях проектов может указываться только один цилиндр (который будет испытываться на сжатие) каждый час или на определенное количество грузовиков или произведенных ярдов. Однако более частая выборка плотности материала, особенно в начале проекта, помогает убедиться, что все оборудование и материалы правильно подобраны для проекта.

    Недостаточный частый контроль плотности или неправильный контроль могут стоить больших денег. Если плотность материала слишком мала, он может не соответствовать требованиям прочности на сжатие. Если материал слишком тяжелый, это означает, что было использовано больше материалов, чем необходимо, что стоит больше денег, чем необходимо.

    При производстве и укладке материала порционным методом обычно можно отбирать пробы материала, когда он поступает из смесителя непосредственно в точку укладки. Отбор проб следует производить, выгружая материал из смесителя в большую емкость, например, ведро на пять галлонов, а затем зачерпывая материал оттуда в испытательные цилиндры.

    Однако, если для размещения используется насос, отбор проб может быть более сложным. Пробы следует брать в месте размещения или как можно ближе к месту размещения. Если ячеистый бетон смешивают в смесителе и проверяют плотность при подаче в насос, вероятно, может быть разница в плотности на конце шланга насоса.

    При перекачивании ячеистого бетона (это означает, что перед подачей в насос добавляется пена) некоторые пузырьки могут раздавливаться или лопаться во время процесса. Однако это не всегда так, поскольку существует множество факторов. Если это произойдет, это приведет к более высокой плотности материала в точке размещения.

    При отборе пробы с конца шланга насоса не помещайте цилиндр в поток материала, чтобы заполнить цилиндр. Соберите все поперечное сечение потока материала в емкость большего размера, например, в пятигаллонное ведро, и зачерпните материал в цилиндр.

    Причина этого заключается в том, что при наличии различий в поперечном сечении потока материала часть, из которой был взят образец, может не давать хорошего представления о плотности материала в совокупности.

    Много раз ячеистый бетон закачивался в глухую переборку, например, в скользящую облицовку, или в подземные оставления, такие как канализационные линии или подземные резервуары. В таких сценариях доступ к материалу, поступающему непосредственно с конца шланга, может быть невозможен.

    Распространенным методом получения образца материала является создание «тестового тройника» на переборке или там, где шланг насоса присоединяется к точке доступа. Тройник с шаровым краном позволит взять образец материала для проверки плотности. В идеале шаровой кран должен иметь тот же размер, что и перекачивающий шланг, чтобы, опять же, весь поток материала мог быть сброшен в контейнер для отбора проб.

    Как показано на рисунке, тестовый тройник имеет трехдюймовое колено, которое должно быть повернуто вниз, чтобы материал было легче удерживать. Трехдюймовое колено используется на двухдюймовой линии, чтобы помочь снизить скорость материала, выходящего из тройника. Если тестовый тройник не нужен, увеличение размера шланга на последних нескольких футах является хорошим способом замедлить скорость материала при высокой производительности, что делает отбор материала более управляемым.

    Использование правильного оборудования и методов для введения с помощью насоса

    При перекачивании ячеистого бетона может возникнуть много проблем, связанных с обеспечением надлежащей плотности на конце шланга насоса, куда помещается материал. Тип насоса, размер шланга и длина шланга в зависимости от плотности; смешанный дизайн; и производительность являются важными факторами.

    Используемый метод производства и оборудование являются другими важными аспектами, которые следует учитывать при укладке ячеистого бетона с помощью насоса. Подробнее о перекачке и укладке ячеистого бетона можно прочитать здесь.

    Поделиться этим контентом