Электрическая Схема Строительного Фена — tokzamer.ru
Выделим два элемента цепи, которые являются потребителями нагрузками , это — спираль и диодный мост двигатель не считаем, так как является нагрузкой моста.
Для этого нужно выполнить ряд последовательных вычислений: Определить силу тока, разделив мощность на напряжение. Использование такого прибора во время проведения ремонта и строительства облегчает выполнение операций по удалению старого лакокрасочного покрытия.
Мощность фена зависит от толщины использованной спирали и мощности установленного электродвигателя.
Ремонт строительного фена.
Большинство фенов китайского происхождения имеют примитивную электрическую схема.

Схема установки диодов в фен.
В фенах в основном применяются электродвигатели постоянного тока с мощностью до 50 ватт, бывают и исключения.
Поэтому, мы как бы не будем заострять свое внимание в том плане, что приведены разъяснения, не относящиеся к электродвигателю строительного фена.

Конструкция строительного фена Схема использования строительного фена. Есть и другие.

Не работает строительный фен, ремонт.
Основные поломки и их причины
Стоит отметить, что особенно удобны фены с плавной регулировкой температуры. Пилить его не стоит, возможно растрескивание. Чехол сделан из бумаги, пропитанной негорючей основой и покрашенный отражающей тепло краской. Однако почти все простые современные фены имеют ступени регулировки мощности и потока воздуха.

Простая конструкция самодельного строительного фена Перед началом изготовления строительного фена своими руками необходимо сделать чертежи или хотя бы эскиз.
Дополнительный функционал обеспечивает удобство в работе и в тоже время усложняет его устройство. Время горения дуги несколько секунд.

По завершении работы регулятор температуры убрать на минимум, оставить на холодном продуве на пол минуты, и только затем выключить фен.
В таких фенах только один переключатель, которым включается вентилятор и теплоэлектронагреватель ТЭН. Испытания требуются для того, чтобы убедиться в работоспособности устройства, его пригодности для выполнения ремонтных и строительных работ, а также для оценки влияния более высокой температуры на элементы, оставшиеся от старой конструкции.

Как нам известно, значение сопротивления от анода к катоду будет значительно меньше чем от катода к аноду.

Термопредохранитель подключается при помощи обжимки не пайки , к противоположному концу спирали имеющей сопротивление 33 Ома. Красивым элементом является рамка с намотанными спиралями.
фен интерскол фэ2000

Принципиальная схема
Диагностика поломки Как правило, строительный фен выходит из строя по причине не соблюдения требований эксплуатации. Далее можно заниматься заменой тех деталей, которые вышли из строя.
Диагностика и ремонт-строительного фена Рассмотрим устройство электродвигателей и как именно нужно проводить диагностику электрических машин, как их принято считать в разделе по электротехнике.

Основной нагреватель R1 включается переключателем SA2 и также имеет две градации: 1 — меньший нагрев в цепь последовательно включен диод VD2 и 2 — больший нагрев диод VD2 исключен. На ручке располагаются переключатели управления для регулированием функциями фена. Изготовленный своими руками термофен можно использовать для проведения следующих строительных операций: сваривание стыков пленочного покрытия; использование при работе с деревом; сваривание изделий из пластмасс; удаление на поверхности изделий слоев клея, линолеума и фанеры; разжигание древесного угля в мангале.
Некоторые из них мы приведем ниже: Возможность применения различных насадок. Этот прибор сушит наши волосы уже больше 75 лет, первая его модель появилась в х годах прошлого века.
Навивка нихромовой спирали Чтобы из нихромовой проволоки навить спираль, нужно прежде всего определить длину цилиндрического стержня или трубки, на которую вы будете её наматывать. Концы нихромовой проволоки требуется вывести наружу. Фен можно применять при смолении деревянных лыж, снятии старой краски, сдувании опилок с верстака, разгоне комаров и муж, сушке вещей, охлаждении сковородки с пельменями и как опахало в жаркие дни. Там должно быть три провода, которые нужно присоединить к клеммам переключателя режимов.
Устройство и его основные принципы

Если же весь аппарат делается своими руками- то рукоятку лучше выполнить из дерева или толстого текстолита. В качестве материала спирали обычно используют нихром.
Произошел обрыв обмотки нагревателя высокого сопротивления. Диагностика поломки Как правило, строительный фен выходит из строя по причине не соблюдения требований эксплуатации. Для более точной диагностики стоит использовать тестер. Электродвигатели в фенах рассчитаны на напряжение 12, 24 и 36 Вольт, только в очень редких моделях используются электродвигатели с питанием Вольт, в таком случае, напряжение из сети напрямую подается на электромотор.
Просверлить отверстия электродрелью. При первом включении следует внимательно прислушиваться и принюхиваться — нет ли где треска короткого замыкания или запаха гари. Вернуться к оглавлению Техника безопасности При работе с электроприборами самостоятельного изготовления требуется помнить о технике безопасности и соблюдать все правила.
Инструменты и материалы для монтажных работ
К ротору двигателя укреплен винт пропеллер который обеспечивает отдув тепла со спирали, именно благодаря этому на выходе получается достаточно сильный направленный поток теплого воздуха. При соединении нихромовой проволоки с проводами не применяется пайка припоем.
При копировании материала ссылка обязательна. Такое устройство отличается от фена, которым мы сушим волосы, только мощностью, в остальном они работают по схожему принципу. Современные приборы оснащаются специальными светодиодными индикаторами, которые облегчают процесс контроля работы устройства.
К таким допфункциям относят наличие возможности: изменения силы воздушного потока; высокоточной регулировки температуры воздушного потока; осуществления выбора режима функционирования прибора. После диода провода разветвляются на ТЭН-3, ограничивающий напряжение на двигатель постоянного тока, включенный через диодный мост VD2-VD5 и на второй регулятор температуры обдува, включенный через размыкающий температурный контакт, расположенный внутри контура с ТЭНами. Если приходится разбирать фен, а он имеет сложную структуру, то необходимо обзавестись качественным фотоаппаратом, чтобы запечатлеть все этапы разборки агрегата.
Собираем термофен и выводим наружу проводки от его спирали, чтобы припаять их к клеммам переключателя режимов Припаять отводы к переключателю и установить его на своё место в корпусе фена. В этой ситуации лучше всего обратиться в специализированный сервисный центр.
Рекомендуем: Траншея для кабеля снип
Устройство строительного фена
Диагностика поломки Как правило, строительный фен выходит из строя по причине не соблюдения требований эксплуатации. Главным отличием термофена от других нагревательных приборов является отсутствие открытого пламени, что полностью исключает необходимость использования топлива.
Из чего состоит фен: Элементы на схеме: 1 — насадка-диффузор, 2 — корпус, 3 — воздуховод, 4 — ручка, 5 — предохранитель от перекручивания шнура, 6 — кнопка режима «Холодный воздух», 7 — переключатель температуры потока воздуха, 8 — переключатель скорости потока воздуха, 9 — кнопка режима «Турбо» — максимальный поток воздуха, 10 — петля для подвешивания фена. Существуют модели мощностью от 0,2 до 2 киловатт, при этом не всегда повышение мощности влияет на цену устройства. Такие приборы не подходят для домашнего применения, при постоянном использовании способны пересушить волосы. Положение 2 переключателя SA1 предназначено для исключения диода VD1 из цепи увеличения времени в каждый полупериод прохождения тока в цепи и, тем самым, скорости потока воздуха вентилятора М1. Он обладает большим перечнем функциональных возможностей.
Специалисты называют следующие поломки оборудования, которые случаются чаще всего: поломка шнура питания в месте перегиба; дефект кнопки пуска и других элементов управления; перегорание внутренних проводов; нарушение целостности нагревательного элемента; перегорание или перегрев двигателя и вентилятора. Берегите глаза.
В качестве обогревательного элемента как правило используется нихромовая спираль, именно она обеспечивает теплый воздух. Если он вам нужен для сушки волос, то необходимо выбирать надежную конструкцию с наименьшим количеством функций. Если при включении устройство выдает холодный воздух из сопла, неисправность касается спирали. Профессиональные фены имеют повышенную мощность и несколько режимов работы.
Ремонт термофена — замена термопредохранителя
Ремонт строительного фена своими руками
Всем нам знаком такой вспомогательный инструмент в строительстве как строительный электрический фен, которым мы привыкли пользоваться для снятия лакокрасочных покрытий.
Основополагающий принцип работы строительного фена мало чем отличим от обыкновенного фена, которым мы пользуемся для сушки волос.
Соответственно и электрическая схема строительного фена имеет сходство с электрической схемой обыкновенного фена.
В изложенной теме будет дано пояснение:
- электрической схеме строительного фена;
- принципу работы строительного фена;
- возможным причинам неисправности;
- устранению данных неисправностей.
Электрическая схема строительного фена
Рассмотрим электрическую схему \рис.1\ строительного фена:
рис.1
Одна диагональ диодного моста — подключается к внешнему источнику переменного напряжения 220В.
Другая диагональ диодного моста соединена с электродвигателем.
Электрическая схема состоит из следующих элементов:
- тумблера, осуществляющим режим температуры управления — К1;
- тумблера, осуществляющим скорость вращения ротора электродвигателя \управление скоростью обдува\ — К2;
- тумблера отключения ТЭНов — К3;
- электродвигателя \вентилятора\ — М;
- конденсатора — С;
- ТЭНов — R\ТЭН\;
- диодов — VD1, VD2.
Через диодную мостовую схему \одной диагонали моста\ выпрямленный ток двух потенциалов \+,-\ поступает на электродвигатель. При переходе от анода к катоду — ток протекает при положительном полупериоде синусоидального напряжения.
Два конденсатора соединенных в электрической схеме параллельно, — служат дополнительными сглаживающими фильтрами.
Скорость обдува происходит за счет изменчивости сопротивления в электрической цепи, то есть, при переключении тумблера скорости на наибольшее значение сопротивления, — скорость вращения ротора электродвигателя уменьшается \в связи с падением напряжения\.
Количество ТЭНов \нагревателей\ в данной схеме — четыре. Температурный режим строительного фена осуществляется тумблером температурного управления.
ТЕНы в электрической цепи имеют разное сопротивление, — соответственно, температура нагрева при переключении из одного участка электрической цепи на другой — нагрев ТЭНов будет соответствовать своему значению сопротивления.
Общий внешний вид строительного фена с его названиями отдельных деталей, — показан на рис.2
рис.2
Следующая электрическая схема строительного фена \рис.3\, — сопоставима с электрической схемой рис.1
В данной электрической схеме отсутствует диодный мост. Управление скоростью обдува и управление температурным режимом, — происходит при переключении из одного участка электрической цепи на другой, а именно:
- при переключении на участок электрической цепи — состоящей из диода;
- при переключении на участок электрической цепи — не имеющей диод.
При протекании тока в переходе анод — катод диода VD1, имеющим свое сопротивление, — ТЭН2 будет нагреваться соответственно двум значениям сопротивлений:
- сопротивления при переходе анод — катод диода VD1;
- сопротивлении ТЭНа \ТЭН2\.
При протекании тока в переходе анод — катод диода VD2, напряжение подаваемое на электродвигатель и ТЭН1, — будет принимать наименьшее значение.
Соответственно, скорость вращения ротора электродвигателя и температура нагрева ТЭНа для данного участка электрической цепи, — будет соответствовать прямому переходу тока диода VD2. Нагрев ТЭНа \ТЭН1\ для данного участка, так же зависит от своего внутреннего сопротивления, то есть учитывается сопротивление ТЭНа.
рис.3
Неисправности строительного фена
Основными причинами неисправности строительного фена здесь можно назвать неисправность элементов электроники:
- диодов;
- конденсаторов.
Чаще всего такая неисправность происходит при резком скачке внешнего источника переменного напряжения. Так например, причина неисправности конденсатора вызвана тем, что обкладки конденсатора замыкаются при скачке напряжения между собой — накоротко.
Конечно же не исключается такая возможность неисправности как разрыв в обмотке статора электродвигателя \перегорание обмотки\.
К незначительным неисправностям можно отнести такие причины как:
- окисление контактов тумблера температурного управления;
- окисление контактов тумблера управления скоростью обдува;
- окисление контактов тумблера отключения ТЭНов;
- разрыв провода в сетевом кабеле;
- неисправность штепсельной вилки \отсутствие контакта\.
Диагностика на выявление причины неисправности проводится прибором » Мультиметр».
При замене конденсатора — учитывается его емкость и номинальное значение напряжения.
При замене диода — учитывается сопротивление двух значений, в направлениях:
- от анода к катоду;
- от катода к аноду.
Как нам известно, значение сопротивления от анода к катоду будет значительно меньше чем от катода к аноду.
С электродвигателем, при его неисправности, дела обстоят по-сложнее. При подобной неисправности, проще заменить электродвигатель чем допустим выполнить перемотку обмоток статора. Но и такая работа выполнима, — кто непосредственно занимается подобным ремонтом. В этом случае учитывается:
- количество витков в обмотке статора;
- сечение медного провода.
Не исключается и такая неисправность как перегорание ТЭНа. Замена ТЭНа проводится с учетом своего значения сопротивления.
Диагностика и ремонт-строительного фена
Рассмотрим устройство электродвигателей и как именно нужно проводить диагностику электрических машин, как их принято считать в разделе по электротехнике.
Для наглядного примера, представлены фотоснимки нескольких типов таких электрических машин, — относящихся к коллекторным электродвигателям. Устройство и принцип работы допустим двух коллекторных электродвигателей:
- пылесоса;
- строительного фена,
— ничем не отличается. Различие в электродвигателях состоит лишь в скорости вращения ротора и в мощности электродвигателя. Поэтому, мы как бы не будем заострять свое внимание в том плане, что приведены разъяснения, не относящиеся к электродвигателю строительного фена.
Электродвигатель строительного фена
Электродвигатель строительного фена — асинхронный, коллекторный, однофазного переменного тока.
рис.4
Устройство ротора не требует каких либо разъяснений, так как все представлено на фотоснимке \рис.4\ и схематическом изображении ротора электродвигателя.
асинхронный коллекторный электродвигатель однофазного переменного тока
Электрическая схема коллекторного электродвигателя \рис.5\ выглядит следующим образом:
рис. 5
В схеме мы можем заметить, что коллекторный электродвигатель может работать как от переменного так и от постоянного тока, — таковы законы физики.
Две обмотки статора электродвигателя соединены последовательно. Две графитовые щетки в контакте — в электрическом соединении с коллектором ротора электродвигателя.
Электрическая цепь замыкается на обмотках ротора, — соответственно, обмотки ротора в электрической схеме соединены параллельно через скользящий контакт щетка — коллектор.
диагностика обмоток статора электродвигателя
На фотоснимке показан один из способов диагностирования обмоток статора электродвигателя. Таким способом проверяется целостность либо пробой изоляции обмоток статора. То есть один щуп прибора соединяется с любым из выведенных концов обмоток статора, другой щуп прибора соединяется с сердечником статора.
В том случае, если будет нарушена изоляция обмотки статора и проводка обмотки будет замыкать на сердечник, — прибор укажет на режим короткого замыкания \нулевое значение сопротивления\. Из этого следует, что обмотка статора неисправна.
Прибор на фотоснимке указывает на единичку при диагностировании, — это еще не будет означать, что данная обмотка статора является пригодной к эксплуатации.
Необходимо так же измерить сопротивление непосредственно самих обмоток. Диагностика проводится таким же подобным способом, — щупы прибора при этом соединяются с выведенными концами проводов обмоток статора. При целостности обмоток, дисплей прибора укажет на значение сопротивления, которым обладает та или другая обмотка. При разрыве той или иной обмотки статора, — прибор покажет «единицу». Если провода обмотки статора между собой будут замкнуты накоротко в результате перегрева электродвигателя или по другим иным причинам, — прибор будет указывать на наименьшее \нулевое\ значение сопротивления или же «режим короткого замыкания».
рис. 6
Как проверить прибором обмотки ротора на сопротивление? — Для этого нужно два щупа прибора соединить с двумя противоположными сторонами коллектора, то есть нужно выполнить такое же соединение, которые имеют графитовые щетки в электрическом соединении с коллектором. Результаты диагностики сводятся к таким же показаниям, что и при диагностировании обмоток статора.
износ пластин коллектора
Что из себя вообще представляет коллектор? — Коллектор, это полый цилиндр состоящий из мелких медных пластин специального сплава, изолированных как друг от друга так и от вала ротора.
В том случае, если повреждение пластин коллектора незначительное, — пластины коллектора зачищаются мелкозернистой наждачной бумагой. Опять же, данный объем работы выполним непосредственно только специалистами, занимающими ремонтом электродвигателей.
рис. 7
Электрическая схема \рис.7\ состоит из батареи и лампочки, данная схема сопоставима со схемой карманного фонарика. Один конец провода с отрицательным потенциалом соединяется с сердечником статора, другой конец провода с положительным потенциалом соединяется с одним из выведенных концов обмоток статора. Если провода соединить наоборот, то есть «плюс» к сердечнику статора, «минус» к выведенному концу обмотки статора, — от этого ничего не меняется.
При наличии пробоя изоляции, когда обмотка статора замкнута с сердечником, — лампочка в данной электрической схеме будет гореть. Соответственно, если лампочка гореть не будет — значит обмотка статора не замкнута с сердечником статора.
Такой способ диагностирования \рис.7\ — не полный. Точная диагностика проводится только прибором Омметр либо прибором Мультиметр с установленным диапазоном измерения сопротивления, для последующего замера сопротивления обмоток статора.
На этом пока все.
Ремонт строительного фена Интерскол ФЭ-2000
Фен строительный (технический) – ручной электроинструмент для направленной подачи нагретого воздуха с целью бесконтактного (опосредованного) нагрева обрабатываемого материала. Область применения инструмента очень обширная: от простой сушки воздухом комнатной температуры, до мощного воздействия температурами свыше пятисот градусов по Цельсию. Спрос на строительные фены подпитывает их невысокая цена (на модели начального уровня), вследствие простоты конструкции и, во многом, отработанных временем схемотехнических решений.
Интерскол ФЭ-2000 является представителем бытовых строительных фенов с минимально необходимым набором функций: плавная регулировка температуры, два режима интенсивности обдува. Этого набора, как правило, вполне достаточно для выполнения подавляющего большинства задач. Конкретный экземпляр данного фена (первая модификация, плата DB3011) был приобретен около трех лет назад, имел весьма немалую (но не запредельную) ежедневную эксплуатационную нагрузку. По этой причине, все несовершенства конструкции фена проявились быстро.
Через несколько месяцев после начала эксплуатации произошла первая поломка: нет регулировки температуры, исходящий воздух всегда холодный. Причина поломки — перегрев симистора BTA16, выход его из строя по причинам недостаточного прижима к радиатору и неприменения теплопроводной пасты. Ремонт заключался в замене симистора с предварительным нанесением пасты КПТ-8. Данная поломка больше не повторялась.
Фен Интерскол ФЭ-2000. Чемодан в комплекте.
Сопло. Виден керамический нагреватель со спиралью внутри.
В конце первого года эксплуатации фена, произошел перелом (внутренний разрыв проводов) кабеля питания рядом с корпусом инструмента. Данная неисправность часто встречается среди инструмента непрофессионального уровня. Родной кабель питания высоким качеством не отличается, имеет изоляцию средней жесткости, четвертый-пятый класс гибкости медных токонесущих жил. Установка нового кабеля КГ 2×1,5 (в резиновой, двойной изоляции) позволила забыть о данном типе неисправности.
На втором году эксплуатации оборвалась высокоомная обмотка нагревателя, служащая балластом питания электродвигателя. Причину обрыва установить трудно, ею может быть как заводской брак (что наиболее вероятно), так и самопроизвольное перетирание нихромовой проволоки о твердые края керамики, вследствие множества циклов нагрева-охлаждения. Обмотка разорвалась — двигатель остановился. В результате останова двигателя с последующим перегревом основной (высокотемпературной) обмотки нагревательного элемента, сработал термопредохранитель (высокотемпературная обмотка осталась цела). Корпус фена был разобран, разобран нагревательный элемент, локализовано место разрыва нихромовой проволоки. Место разрыва оказалось неподалеку от одного из концов обмотки, по этой причине было принято решение не соединять концы проволоки, а смотать (убрать) короткий отрезок. Было уменьшено сопротивление балластной обмотки, по примерным расчетам, на 8-12%, что не критично для двигателя. К этому времени, уже изредка начали появляться посторонние шумы подшипников двигателя и его время, к сожалению, явно подходило к концу. Штатный термопредохранитель имел номинальную температуру срабатывания 125°C , он был заменен новым с более высокой температурой 150°C. Небольшой температурный запас объясняется предположением о том, что дополнительные 25°C вряд ли позволят сгореть обмотке нагревательного элемента (в случае аварийной ситуации), зато дадут больше времени на оперативное отключение фена до срабатывания (обрыва) термопредохранителя. Чтобы заменить термопредохранитель, нужно почти полностью разобрать нагревательный элемент. Около половины всех керамических колец, из которых набирается сердечник нагревательного элемента, со временем растрескалось (видимо, по причине низкого качества керамики) и, при снятии внешней оболочки из слюды, кольца распадаются на небольшие частички. Термопредохранитель соединяется с обмоткой нагревательного элемента и с проводом питания при помощи миниатюрных опрессовочных гильз, заново качественно опрессовать которые (без специального инструмента) очень проблематично. Для удобства возможной замены термопредохранителя в будущем, он был установлен с применением плоских разъемов (автомобильных клемм).
К концу второго года эксплуатации, начали сильно «звенеть» подшипники скольжения в двигателе. Также, произвольным образом, стало пропадать и появляться вновь напряжение на высокотемпературной спирали нагревательного элемента при вращении ручки регулятора. Эти неисправности быстро усугубились, дальнейшее нормальное использование фена по прямому назначению не представлялось возможным: двигатель гудел, обороты его упали, выставить нужную температуру нагрева было практически невозможно. Назрела острая необходимость в глубоком восстановлении работоспособности фена.
Взрыв-схема (схема сборки) фена Интерскол ФЭ-2000.
Схема электрическая принципиальная фена Интерскол ФЭ-2000.
Корпус фена вскрыт (фот сверху). Крепежные шурупы корпуса (фото снизу).
Внутренности фена Интерскол ФЭ-2000.
Слева направо: плата, двигатель с крыльчаткой, переключатель режимов работы, нагреватель.
Плата DB3011.
Нагревательный элемент фена Интерскол ФЭ-2000.
Замена электродвигателя.
Отыскать нужный двигатель в продаже, есть задача не простая. Поэтому, когда подходящий по габаритам двигатель был обнаружен, было принято решение приобрести двигатель независимо от других его характеристик (обороты, напряжение). В итоге оказалось, что купленный двигатель имел в несколько раз меньше напряжение питания (12 В) и, примерно, в полтора-два раза меньше оборотов, чем штатный двигатель фена. Эти задачи предстояло решить, но вначале нужно снять старый и установить новый двигатель в корпус фена. Процесс замены двигателя не очень сложный. Наибольшую трудность представляет демонтаж пластиковой крыльчатки с вала двигателя. С помощью подручных средств организовываем клиновидный упор снизу ступицы и, с помощью сверла диаметром 2 мм, понемногу выколачиваем вал двигателя. По мере выхода вала, положение упора (клина) нужно корректировать. Будьте крайне внимательными, не повредите пластиковую ступицу крыльчатки! Перед тем, как одеть снятую крыльчатку на вал нового двигателя, необходимо закрепить двигатель двумя винтами и обезжирить поверхность вала с помощь ацетона. Не будет лишним очистить и обезжирить внутреннюю поверхность ступицы крыльчатки бензином или спиртом. Насаживаем крыльчатку на вал нового двигателя вручную (можно слегка подколотить миниатюрной резиновой киянкой), уперев другой конец вала (находящийся вблизи щеточно-коллекторного узла) во что-либо твердое.
Двигатель с крыльчаткой.
Крыльчатка из пластмассы крупным планом.
Снимаем крыльчатку с двигателя.
Используем пинцет в качестве упора. По сверлу, которое упирается в вал двигателя, наносим легкие удары небольшим молоточком.
Крыльчатка с вала снята. Двигатель демонтирован.
Старый (слева, без маркировки) и новый (справа) двигатели.
Конденсаторы на новый двигатель не устанавливались.
Измерение родного двигателя.
Термопредохранитель (фото слева). Разъем плоский типа РпИм+РпИп (фото справа).
Блок питания двигателя.
Решить проблему питания электродвигателя можно двумя способами: увеличить длину (число витков) балластной обмотки или подать на двигатель питание от какого-либо другого источника. Первый способ осложняется необходимостью поиска нужной нихромовой проволоки и места для размещения дополнительных витков в нагревательном элементе (который буквально рассыпается в руках). Пойдем по второму пути – изготовим отдельный источник питания. Очень подходящим по размеру и по току нагрузки оказалось зарядное устройство от сотового телефона. Плата зарядника помещается рядом со штатной платой фена, необходимо обеспечить должные уровни изоляции (предотвратить нежелательные касания плат) и крепления (фиксации). Но есть одна загвоздка – выходное напряжение. Как известно, у зарядного устройства оно составляет около 5 В, а нам нужно 12. Следовательно, будем увеличивать число витков во вторичной обмотке выходного трансформатора блока питания (зарядного устройства). Выпаиваем трансформатор, разбираем магнитопровод, осторожно разъединяя ферритовый сердечник на две половины (упростить задачу смогут прогрев трансформатора до 100°С и применение ацетона). В крайнем случае, если разобрать магнитопровод не удается, можно мотать по челночному принципу, дабы число витков невелико. Главное – не расколоть феррит!
Находим финишный конец вторичной обмотки и начинаем не спеша сматывать виток за витком, считая их количество и запоминая направление намотки провода. Когда вторичная обмотка смотана, необходимо произвести элементарные расчеты по определению числа витков для напряжения питания двигателя (в нашем случае — 12 В): находим число витков, приходящееся на 1 В (зная бывшее выходное напряжение зарядного устройства), умножаем на него целевое значения напряжения питания. Не будет лишним добавить пару витков прозапас (при необходимости, их можно быстро смотать).
Мы увеличили выходное напряжение в 2,4 раза, максимальный ток нагрузки закономерно уменьшается на это же значение. Как известно, ток обмотки трансформатора зависит от площади поперечного сечения проводника. Чтобы определить минимально допустимое сечение провода для новой вторичной обмотки, измеряем диаметр (и вычисляем площадь сечения) смотанного провода, делим полученное значение на 2 (грубое приближение, углубляться в дебри расчетов не будем). Если ширина зазора для укладки провода позволяет, то вовсе не обязательно выбирать провод более тонкий, главное – уместить требуемое количество витков и свободно одеть магнитопровод. Наматываем провод виток к витку, соблюдая направление намотки и считая количество витков. По завершению, подпаиваем концы провода к выводам трансформатора, не забыв удалить изоляционную эмаль в местах пайки. Покрываем сопрягаемые торцы каждой из двух половин магнитопровода цапонлаком, собираем трансформатор, прижав половинки феррита друг к другу на время пока лак не подсохнет. Плотно наматываем сверху на магнитопровод два-три слоя тонкой полосы из изоляционной ленты или бумажного скотча, покрываем её сверху цапонлаком, сушим. Впаиваем трансформатор в плату блок питания, подключаем двигатель, измеряем напряжение. Если оно слишком велико, сматываем витки. Когда напряжение правильное, закрепляем вторичную обмотку – наносим на нее тонкий слой цапонлака. Трансформатор готов. Нужно заметить, что в результате этой переделки, мы получили всего одну скорость вращения двигателя, а именно некое среднее её значение по отношению к двум изначальным (паспортным) скоростям.
Плата зарядного устройства сотового телефона до переделки.
Разбираем трансформатор.
Вторичная обмотка трансформатора имела 12 витков провода D=0,35 мм в один слой.
Фото слева: катушка с эмальпроводом ПЭТВ D=0,32 мм, которым будет намотан трансформатор.
Фото справа: намотанная катушка трансформатора (29 витков ПЭТВ D=0,32 мм в два слоя).
Установка (склеивание) ферритового магнитопровода. Нанесение цапонлака.
Круговая обмотка изоляционной лентой (фото справа).
Перемотанный трансформатор установлен на плату блока питания (фото слева).
Плата блока питания двигателя готова к установке в фен (фото справа).
Штатные диоды (D1-D5) питания двигателя демонтированы для получения дополнительного свободного места (фото слева).
Плата блока питания двигателя на своем месте (фото справа).
Замена переменного резистора.
Чтобы убедиться в неисправности оного, вместо высокотемпературной обмотки нагревателя подключим лампу накаливания (см. аналогичный пример в статье — ремонт паяльной станции Solomon SR-976). Подаем на плату питание и видим, что лампа неадекватно реагирует на вращение переменного резистора. Выпаиваем штатный переменный резистор, временно подключаем любой другой (заведомо исправный) с тем же сопротивлением 100 К. Видим правильную работу схемы: скважность вспышек лампы четко привязана к углу поворота ручки (движка) переменного резистора, причем в одном крайнем положении движка свечение лампы отсутствует, в другом – наблюдается полный накал. Неисправность локализована, меняем переменный резистор новым (исправным). В нашем случае был установлен двигатель с меньшими оборотами, и интенсивность обдува спирали уменьшилась. Необходимо ограничить максимальную температуру нагрева спирали, во избежание ее перегрева и/или срабатывания термопредохранителя. Для этого, последовательно с переменным резистором (в разрыв бокового вывода, соответствующего максимальной мощности) впаиваем постоянный резистор, сопротивление которого определяется экспериментальным путем, визуально наблюдая за цветом накала спирали.
Лампа накаливания подключена вместо спирали.
На левом фото изображены старый (слева) и новый (справа) переменные резисторы.
На правом фото показан новый переменный резистор сдвоенного типа (2 x 100 K). Вскрытие корпуса — самый быстрый способ определить назначения выводов.
Придать нужную форму ручке резистора помогут надфили (фото слева).
Новый переменный резистор установлен (фото справа). Внутри красной термоусаживаемой трубки находится добавочный резистор сопротивлением 130 K.
Степень накала спирали в положении ручки регулятора, соответствующее максимальной температуре воздуха.
Измерение минимальной и максимальной температуры воздуха.
Выводы.
Технические решения, примененные в конструкции строительного фена Интерскол ФЭ-2000 первой модификации не уникальны и не отличаются высокой надежностью. Фен справедливо не позиционируется производителем как инструмент для профессионального использования. Инструмент вполне подходит для применения в быту. При наличии некоторого начального уровня подготовки пользователя, не составит большого труда самостоятельно восстановить работоспособность фена, так как его ремонтопригодность хорошая. Будущим обладателям модели ФЭ-2000, и тем, кто планирует использовать фен интенсивно, можно порекомендовать сразу после покупки проверить качество теплового контакта симистора с радиатором и, при необходимости, нанести теплопроводную пасту. Также не будет лишним сразу заменить провод питания на более качественный.
Похожие статьи:
Доработка строительного фена
Строительный фен, в радиолюбительстве незаменимая вещь. Не буду перечислять все возможности использования, я его купил, когда пришлось упаковывать 3м гибкой шины в термоусадочную трубку. Взял самый дешевый по тому, что использовать его намеревался не в профессиональных, а любительских целях.
С первой задачей, (упаковка гибкой шины), фен справился прекрасно, и я даже порадовался за удачную покупку.
Потом были еще, какие то применения, и в один прекрасный момент было замечено, плохое включение на повышенной мощности.
Быстренько раскидав его на запчасти, убедился, что причина в переключателе, (плохой контакт клемм сделал свое дело).
Замена переключателя не была проблемой, проблема была в другом. Перед глазами лежала «заготовка», которую можно было модернизировать под свои запросы.
- Чтобы была возможность применять насадки, необходима стабилизация температуры.
- Для применения в монтаже радиодеталей, необходимо менять силу воздушного потока.
- Чтобы сложить фен в коробку, он должен остыть. То есть, должна быть возможность отключения нагрева спирали, без выключения вентилятора.
- В свою очередь работа одного вентилятора, дает возможность использования фена для охлаждения чего-либо, и т.д.
Собственно, все выше изложенное и было внедрено в корпус самого дешевого фена.
Включение питания фена.
После включения питания, устанавливается режим охлаждения:
- Нагрев спирали отключен.
- Вентилятор работает на первом положении скорости.
- Установлен нижний предел уставки температуры воздушного потока.
- На семисегментном индикаторе высвечивается температура воздушного потока.
- Светодиод «температура», показывает выше или ниже уставки, температура воздушного потока. Если температура выше уставки,- светит зеленый. Если ниже,- красный.
?
Установка температуры воздушного потока.
Температура воздушного потока, устанавливается при помощи кнопок +/-.
Минимальная уставка 60*С, максимальная 630*С.
Изменение температуры происходит с шагом 10 градусов.
Первое, кратковременное нажатие на кнопки изменения температуры, включает меню уставки температуры. Последующие кратковременные нажатия кнопок +/-, будут изменять уставку температуры с дискретностью 10 градусов. В случае удержания кнопки, больше одной сек., включается ускоренная прокрутка значений уставки.
Если кнопки не нажимались более одной секунды, происходит автоматический возврат в меню индикации температуры воздушного потока.
Изменение скорости воздушного потока.
Изменение скорости производится при помощи кнопок +/-, и имеет семь градаций. При удержании кнопки более одной секуны, включается ускоренная «прокрутка».
Индикатор скорости представляет из себя линейку светодиодов.
Количество светящихся светодиодов, пропорционально скорости воздушного потока.
Включение нагрева спирали.
Включение нагрева, производится при помощи кнопки «нагрев».
Каждое нажатие кнопки, будет включать или отключать нагрев спирали.
Свечение красного светодиода показывает, что нагрев спирали, включен.
Отсутствие свечения,- нагрев отключен.
Конструкция и детали.
Вся конструкция регулятора температуры и скорости воздушного потока, собрана на двух платах.
На первой:
- Импульсный блок питания. На выходе имеет +16В для питания мотора вентилятора, и два по +5В, для питания цифровой и аналоговой частей регулятора.
- Симисторный регулятор, мощности нагрева спирали фена. Используется метод пропуска периодов сетевого напряжения, с равномерным распределением во времени.
- Силовой ключ, ШИМ регулятора оборотов мотора вентилятора. Используется аппаратный ШИМ микроконтроллера, частотой 30кГц.
?
?
На второй:
- Блок управления и индикации. Включает в себя, пять кнопок управления, один трехразрядный семисегментный индикатор измеренной температуры воздушного потока, и ее уставки. Десять светодиодов, из них семь,- линейка индикации скорости воздушного потока. Два,- индикатор состояния температуры (выше, ниже уставки). Один,- индикатор включения нагрева спирали.
- Усилитель термопары, и МК.
?
?
Обе платы выполнены по методу лазерно-утюжной технологии. Первая плата с односторонним монтажом радиодеталей, крепится пайкой, на клеммах мотора вентилятора. Вторая, с двухсторонним монтажом, крепление при помощи четырех саморезов к крышке корпуса фена. Она же является лицевой панелью модуля управления.
Электрическая схема.
Вся схема разбита на семь функциональных узлов:
- Импульсный блок питания.
- Блок управления нагревом спирали.
- Блок усилителя термопары.
- Нагревательный элемент и термопара.
- Блок управления двигателем вентилятора.
- Микроконтроллер.
- Модуль ввода-вывода.
?
Импульсный блок питания.
Блок питания собран на микросхеме TOP224, по оригинальной схеме https://www.premiermag.com/pdf/pol-12017.pdf
Блок питания обеспечивает схему тремя напряжениями:
16v — для питания мотора вентилятора, максимальный ток 1А.
5vc — для питания цифровой части схемы, ток до 0,5А.
5v — для питания аналоговой части схемы, ток до 0,05А.
Узлы самостоятельного изготовления, дроссель L1 и трансформатор TV1. Дроссель намотан на каркасе «катушка», и должен иметь индуктивность до 10мкГн, а также иметь возможность пропускать соответствующий ток 1,5А.
Трансформатор взят с 20ватной энергосберегайки. Центральная часть сердечника 5х5мм. Число витков первичной обмотки подбиралось по «калькулятору лысого». И в моем случае составила 72 витка. Моталось проводом диаметром 0,23мм. Вторичная обмотка имеет 8 витков сложенных в четверо, того-же провода 0,23мм. Обмотка обратной связи имеет 7 витков, так же сложенного в четверо провода. При максимальной нагрузке, когда вентилятор питается от полного напряжения 16В, начинает нагреваться трансформатор и микросхема TOP224. Однако, в виду пропорционального увеличения охлаждения, (потока воздуха), температура не превышала 45*С, при окружающей температуре 32*С. Измерения проводились инфракрасным термометром DT8220, кстати, очень удобным в этом отношении.
Конечно же, перед самостоятельным изготовлением таких трансформаторов желательно проштудировать соответствующую литературу. Т.к. многие моменты, сборки и намотки трансформатора здесь не рассматриваются.
Блок управления нагревом спирали.
Схема управления нагревом спирали, построена на симисторе BTA41-600.
Взята из даташита на MOC3063, и особенностей не имеет. Оптрон с детектором нуля сетевого напряжения, обеспечивает «тихое управление нагрузкой». Но в виду того, что нагрузка порядка двух киловатт, то лампа накаливания, включенная в ту же розетку, будет «показывать» работу ПИ регулятора (попросту будет слегка помаргивать).
Блок усилителя термопары.
Схема усилителя термопары собрана на операционном усилителе AD8551.
На этот раз схема включения взята не из даташита, но довольно стандартна. Задача усилителя, усилить ЭДС термопары, по этому емкость ООС С10, имеет большое значение при фильтрации импульсных помех. Фильтр нижних частот на выходе U4, подавляет 50герцовую составляющую выходного сигнала. Коэффициент усиления подбирается при помощи резистора R24 (грубо). Более точное вычисление происходит уже программно.
Нагревательный элемент и термопара.
Конструкция нагревательного элемента, претерпела легкое изменение. Была удалена спираль питания двигателя вентилятора. И вставлена термопара.
На фото девственное состояние нагревателя, состояние после переделки, к сожалению не увековечилось. Но там ничего сложного нет. Белые провода, идущие на питание мотора, — удаляются в месте со своей спиралью. Термопредохранитель подключается при помощи обжимки (не пайки), к противоположному концу спирали имеющей сопротивление 33 Ома. Черный провод дополнительной спирали, просто откусывается, а конец спирали остается в керамике. Красный провод остается нетронутым.
Термопара пропускается через освободившийся канал, где раньше был термопредохранитель. Конец термопары с холодным спаем подключается к плате при помощи винтов. Холодный спай спрятан под красной термоусадочной трубкой. Температура холодного спая контролируется внутренним термометром МК. И на практике имеет не большую разницу, (1-2*С).
Блок управления двигателем вентилятора.
Управление воздушным потоком происходит за счет изменения оборотов двигателя вентилятора. Обороты в свою очередь зависят от питающего напряжения. Одним из простых способов управления является ШИМ (широтно-импульсная модуляция).
Аппаратный ШИМ обеспечивает МК. Частота выбрана 30кГц, что дает возможность обойтись без драйвера управления ключом. В качестве ключа, использован интеллектуальный транзистор BTS113A. И может быть заменен полевым транзистором с «логическим входом».
Микроконтроллер.
В схеме использован МК PIC16F1823, это четырнадцативыводный камень. Тактовая частота 30МГц, что позволяет довольно шустро, обрабатывать поступающую информацию. Выводы RA0, RA1, RA3, не используются, оставлены на развитие (если будет).
Модуль ввода-вывода.
В виду малого количества выводов у МК, и большого количества элементов индикации и ввода (кнопок), было решено использовать сдвиговой регистр 74HC164.
Транзисторы VT1-VT4 выпаяны из какой то платы, и по обозначению на корпусе подходят под BC817 или BC337, в корпусе SOT23.
Светодиоды LED1-LED10, так же в SMD исполнении, но могут быть заменены на 3мм, без значительного изменения печатной платы.
Вопросы задаем на форуме.
Ссылка для скачивания доступна только авторизованным пользователям сайта !
Ссылка для скачивания доступна только авторизованным пользователям сайта !
П.С. Эта статья представлена не столько для повторения, сколько для стимула к поиску новых подходов и решений, при создании своих любительских конструкций.