Энергоэффективность дома – ГОСТ Р 54862-2011 Энергоэффективность зданий. Методы определения влияния автоматизации, управления и эксплуатации здания

Содержание

Класс энергоэффективности жилого дома

Энергоэффективность – довольно новое слово в строительстве жилых домов. С ростом цен на энергоносители возросла необходимость экономить тепло и электричество в домах. Особенно заметна эта экономия на примере многоэтажных зданий, утепление которых и вышло на передний план в деле повышения их энергоэффективности. Рассмотрим подробнее, что такое класс энергоэффективности многоквартирного дома и откуда пошло данное понятие.

класскласс

Для того, чтобы заниматься утеплением многоквартирных домов, государство готово на всё, кроме внесения соответствующих изменений в Гражданский Кодекс. В этом документе не прописана чёткая схема благоустройства зданий, находящихся в совладении. Поэтому прийти к единому мнению жильцы таких домов практически не могут. А вот в уставах ОСМД практически всегда этот момент освещается в полной мере, и вопрос может быть решён без единодушного согласия совладельцев.

Что собой представляет энергоэффективность многоквартирных домов

Растущие цены на электроэнергию и топливо подтолкнули многих к поиску альтернативных решений. То, что в Европе доступно давно, у нас только набирает ход. В обиходе сравнительно недавно появились новые понятия: пассивный и энергоэффективный дом. Но их нельзя считать синонимами.


Дом пассивный проектируется так, чтобы в нем не использовалась отопительная система. Строится с учетом минимальных потерь тепла, а архитектурное исполнение продумано так, чтоб максимально поглощать солнечное тепло. Для этого принимаются во внимание климатические особенности регионов. По всей территории РФ построить пассивный дом своей мечты невозможно, так как климатическая составляющая очень изменчива. Поэтому компромиссом в этом вопросе может стать дом энергоэффективный.

Важно! При строительстве энергоэффективного дома особое и тщательное внимание уделяется подбору строительного материала, экологического по составу, для стен, утепляющих материалов, отделки внутри здания. Принцип такого дома – идеальная изоляция и искусственная вентиляция для воздухообмена. Если проигнорировать этот момент, то токсины, содержащиеся в некачественных стройматериалах, будут выделяться и даже могут превысить допустимую концентрацию, большую, чем в обычных домах, в которых действует дополнительная вентиляция за счет щелей в ограждающих конструкциях дома.

Как определить класс энергоэффективности дома

Энергоэффективность определяется энергетическими стандартами европейских стран и установленными в РФ. Само понятие энергоэффективности в разных регионах и странах может отличаться. К примеру, в странах ЕС сейчас решаются вопросы о том, чтобы достигнуть нулевых энергозатрат. Мы же бьемся над другими вопросами: как снизить теплопотери и освоить другие источники энергии. Поэтому в нашей стране на стадиях проектировки и ввода в эксплуатацию здания заполняется специальный паспорт — энергетический. Установленных в точном порядке по закону на государственном уровне правил определения класса пока что нет, однако в этом паспорте указывается класс энергоэффективности здания: А, В, С:

  • Класс А — очень высокий. Позволяет сэкономить максимальное количество энергетических ресурсов и тепловой энергии.
  • Класс В — высокий. Бывает присвоен в случае выполнения более половины требований по правилам энергоэффективности.
  • Класс С — нормальный. Стандартно решают присваивать объектам недвижимости, построенным более 10-15 лет назад.

энергоэф домовэнергоэф домов
Последний класс присвоения характеризует здание, в котором параметр расхода тепла на обогрев здания отклоняется от нужного более чем на 29%. В паспорте или табличке могут быть предоставлены рекомендации, как повысить энергоэффективность здания. Что такое класс энергоэффективности любого многоквартирного дома, как он присваивается и получить более подробную информацию относительно именно вашего здания можно в управляющей компании. Во многих новостройках для собственников информацию о присвоении определенного фактического класса энергоэффективности размещают на специальных табличках. Для определения класса энергетической эффективности жилого дома используются, как специальные приборы учета, так и определенная таблица данных энергосбережения.

Для определения источников потерь тепла в построенном доме может оказаться полезным выполнение правил тепловизионной съемки, помогающей произвести работы по минимизации потерь тепла и определять путь для оптимизации. Часто это дополнительные вложения в качественную изоляцию, которая значительно уменьшит затраты на отопление помещения. Однако эти вложения вернутся к вам в течение нескольких лет.

класс домакласс дома

Преимущества энергоэффективных домов

Высокий класс энергетической эффективности многоквартирного дома отличается герметичностью строительства. По принципу работы он чем-то похож на термос: не впускает холод, а тепло удерживает. Серьезное внимание в таких домах уделяется герметичности во всех местах и узлах, где потенциально возможна утечка тепла: это соединение кровли с несущими частями здания, оконными и дверными проемами. Учитывается даже форма здания и его расположение по отношению к частям света. Окна практически всегда предусматриваются с южной стороны, для лучшего притока тепла и света. Из коммуникаций такому дому нужны только электроэнергия и вода для обеспечения необходимых нужд. В случае экстренного отключения энергии дом пассивного типа очень медленно остывает, всего на один градус за 24 часа, если температура за стенами здания 15 градусов по Цельсию.

Важно! Обязательно в нем проектируется автоматическая вентиляционная система с функцией удержания тепла. Данная система оборудована рекуператором — теплообменником, преобразующим энергию использованного воздуха для того, чтобы нагревать потоки входящего воздуха. Атмосферный воздух поступает в теплообменник не через обычную вентиляционную трубу, а подземную, снабженную рекуператором.

В немецком городке Дармштадт был образован институт по изучению технологий пассивного дома, занимающийся проектными вопросами, новыми исследованиями, консультационной помощью в этой сфере. Цель такого дома – достичь практически полной независимости от расходов, затрачиваемых для поддержания нужной температуры в помещениях. Обогрев помещения осуществляется за счет тепла, выделяемого людьми, проживающими в нем, техникой, используемой в здании, и энергией солнца. Западная Европа богата на пассивные дома, их число исчисляется тысячами. В пассивные дома переоборудованы как частные особняки, так и общественные здания и в Финляндии, Дании, Чехии построены экодеревни из таких домов. Для внедрения технологий, позволяющих экономить энергию, разрабатываются программы от государства, нацеленные на то, чтобы все строительные проекты привести к очень низкому потреблению энергии.


Как уже упоминалось выше, в нашей стране эти технологии только начинают занимать свои ниши. С 2010 года Правительством РФ была поддержана идея о строительстве малоэтажных поселков по стандартам класса энергоэффективности мкд. К сегодняшнему дню уже во многих городах РФ построены энергоэффективные здания и целые поселки.

Проблемы с энергоэффективностью МКД в России

Представители ОСМД могут обратиться за консультацией в компанию, которая определит, какие именно меры должны быть приняты для повышения класса энергетической эффективности многоквартирного дома. К основным методам энергосбережения в жилых домах относится утепление стен и крыши, замена старых окон и входной двери, как в квартирах, так и на лестничных клетках.

Не последнюю роль может сыграть индивидуальный базовый контроль потребления тепла самими жильцами. С этой целью на батареи отопления могут быть установлены счётчики, а также регулировочные клапана. Таким образом, становится возможным использовать тепловое оборудование не в едином режиме в течение всего отопительного сезона, а управлять его интенсивностью в соответствии с капризами погоды. Годовые поэтапные работы для решения проблем с энергоэффективностью могут позволить поднять класс здания.

Важно! Сама процедура утепления домов выглядит понятной и осуществимой, к тому же экономия средств после проведения модернизации уже за год-полтора покрывает все расходы. Но осуществить эту идею можно только при наличии крупной суммы, которую взять просто неоткуда.

Государство выделяет на ремонт домов не так уж много, и в основном все деньги уходят не на утепление, а на продление жизни аварийных зданий. Сами жильцы многоквартирных домов тоже не всегда могут внести необходимые средства, так как средний уровень доходов в несколько раз ниже, чем требуемая на утепление сумма.

А получить кредит в банке даже юридическое лицо ОСМД не может, так как не предоставит гарантий его погашения.

что это и в чем плюсы — ДомКлик

Партнерам

 

Таблички с указанием класса энергоэффективности появляются на многих домах. Что они означают? Вместе с генеральным директором управляющей компании «КВС-Сервис» Вадимом Ушаковым разбираемся, что такое энергоэффективность и в чем преимущества таких домов для жителей.

Партнерский материал

Что такое энергоэффективность

Энергоэффективность — это рациональность в потреблении ресурсов, и в первую очередь тепловой энергии на подогрев воды для горячего водоснабжения и отопления. Класс энергоэффективности закладывается еще на этапе проектирования дома.

Партнерам

Для большинства жителей классификация энергоэффективности непонятна, и при выборе квартиры они далеко не всегда обращают на нее внимание. Между тем, это очень важная характеристика: чем выше класс энергетической эффективности, тем больше экономия на ресурсах, тем комфортнее проживание в доме. И для тех покупателей, которые это понимают, для них современные энергосберегающие решения в доме входят в перечень ключевых критериев при выборе жилья.

Генеральный директор управляющей компании «КВС-Сервис» Вадим Ушаков

Будет ли здание удерживать тепло, зависит от многого: начиная от планировки помещений и заканчивая качеством утеплителя для стен и кровли, коэффициентом сопротивления теплопередачи стеклопакетов, дверей и самой системы отопления. Все это позволяет дому удерживать тепло и не потреблять ресурс впустую, отсюда и экономия. 

Экономия в энергоэффективных домах

Разница между домами категорий А и С может составить 10-15% от общей суммы за коммунальные услуги. Если сравнивать с домами старого фонда, то цифры, конечно, могут быть другими. Такие дома могут напрасно расходовать больше 50% приходящих в здание ресурсов. Например, тепло уходит из здания из-за некачественных стеклопакетов, которые сквозят и пропускают холод.

Это вынуждает жильцов включать обогреватели раньше, чем в домах с более высоким классом энергетической эффективности, или запускать дополнительные приборы для отопления, которые также расходуют электричество. Протечки труб становятся причиной дополнительных платежей за воду. Кроме того, если в доме нет индивидуального теплового пункта и горячая вода приходит с ТЭЦ, значительное количество тепла теряется при транспортировке от ТЭЦ к квартире.

Партнерам

ЖК «Континенты», класс энергоэффективности А

Дополнительные плюсы для жителей энергоэффективных домов

Энергоэффективность — это еще и стабильный, ровный микроклимат в доме. Когда теплопотери у дома высокие, приходится поддерживать подачу тепла. Водяные и электрические обогреватели сжигают кислород, человеку становится душно, он проветривает помещение, и процесс идет по второму кругу.

Конечно, намного комфортнее жить в доме с высокой энергетической эффективностью: погодозависимая автоматика учитывает температуру за окном и корректирует уровень нагрева теплоносителя, подает в помещение оптимальное количество гигакалорий. Из окон не будет сквозняка, что убережет от простуды. 

Можно посмотреть на этот вопрос еще шире, не только исходя из экономии на коммунальных платежах. Энергоэффективность — это разговор про ответственное отношение к потреблению ресурсов в целом. Стремясь к энергоэффективности сегодня, мы даем верные ориентиры подрастающему поколению, воспитывая в нем ответственное отношение к использованию ресурсов. 

Дом с высоким классом энергоэффективности оборудован системами сложной автоматики

Такие системы нуждаются в тонкой настройке, включают погодное регулирование и теплоучет. Работа с этими системами предъявляет повышенные требования к квалификации инженерно-технического персонала. Очевидно, что простого слесаря-сантехника со средним специальным образованием здесь будет недостаточно, нужны специалисты с высшим инженерным образованием.

Большинство домов ГК «КВС» имеет класс энергоэффективности А (очень высокий), и при обслуживании мы учитываем многие факторы, например, что для фасадов на северной и на южной сторонах дома предусмотрены различные тепловые режимы.

Партнерам

Клубный дом G9, класс энергоэффективности А

Важно эффективно использовать электроэнергию для освещения, интегрируя системы управления освещением и диспетчеризации. Для работы с этими системами нужны подготовленые специалисты. И чем больше умной автоматики на доме, тем сложнее в итоге этот дом в обслуживании.

С другой стороны, все это — внутренние вопросы управляющей организации. Для жильцов такой дом комфортнее, мы получаем минимум жалоб на отопление, напор воды, холодные стены и так далее. А для управляющей компании удовлетворенность жителей домом и его эксплуатацией — самая главная цель работы.

Внимание, мнение автора может не совпадать с позицией редакции ДомКлик. 


Сейчас читают

Как определить качество строительства дома

Инструкция: как купить квартиру в ипотеку

Какой первоначальный взнос нужен для ипотеки

Спасибо за ваш отзыв

Была ли эта статья полезна?

Да, полезна

Нет

Повышение Энергоэффективности Зданий: 89 Способов • МинСтрой

NНаименование мероприятияОжидаемые результатыПрименяемые технологии, оборудование и материалы
1234
I. Перечень основных мероприятий
Система отопления и горячего водоснабжения
1.Установка линейных балансировочных вентилей и балансировка системы отопления1) Рациональное использование тепловой энергии
2) Экономия потребления тепловой энергии в системе отопления
Балансировочные вентили, запорные вентили, воздуховыпускные клапаны
2.Промывка трубопроводов и стояков системы отопления1) Рациональное использование тепловой энергии
2) Экономия потребления тепловой энергии в системе отопления
Промывочные машины и реагенты
3.Установка коллективного (общедомового) прибора учета тепловой энергииУчет тепловой энергии, потребленной в многоквартирном домеПрибор учета тепловой энергии, внесенный в государственный реестр средств измерений
4.Установка коллективного (общедомового) прибора учета горячей водыУчет горячей воды, потребленной в многоквартирном домеПрибор учета горячей воды, внесенный в государственный реестр средств измерений
5.Установка индивидуального прибора учета горячей водыУчет горячей воды, потребленной в жилом или нежилом помещении в многоквартирном домеПрибор учета горячей воды, внесенный в государственный реестр средств измерений
Система электроснабжения и освещения
6.Замена ламп накаливания и ртутных ламп всех видов в местах общего пользования на энергоэффективные лампы (светильники)1) Экономия электроэнергии
2) Улучшение качества освещения
3) Устранение мерцания для освещения
Светодиодные лампы и светильники на их основе
7.Установка коллективного (общедомового) прибора учета электрической энергииПовышение точности и достоверности учета электрической энергии, потребленной в многоквартирном домеПрибор учета электрической энергии, позволяющий измерять объемы потребления электрической энергии по зонам суток, внесенный в государственный реестр средств измерений
8.Установка индивидуального прибора учета электрической энергииПовышение точности и достоверности учета электрической энергии, потребленной в жилом или нежилом помещении в многоквартирном домеПрибор учета электрической энергии, позволяющий измерять объемы потребления электрической энергии по зонам суток, внесенный в государственный реестр средств измерений
Дверные и оконные конструкции
9.Заделка, уплотнение и утепление дверных блоков на входе в подъезды и обеспечение автоматического закрывания дверей1) Снижение утечек тепла через двери подъездов
2) Рациональное использование тепловой энергии
Двери с теплоизоляцией, прокладки, полиуретановая пена, автоматические дверные доводчики и др.
10.Установка дверей и заслонок в проемах подвальных помещений1) Снижение утечек тепла через подвальные проемы
2) Рациональное использование тепловой энергии
Двери, дверки и заслонки с теплоизоляцией
11.Установка дверей и заслонок в проемах чердачных помещений1) Снижение утечек тепла через проемы чердаков
2) Рациональное использование тепловой энергии
Двери, дверки и заслонки с теплоизоляцией, воздушные заслонки
12.Заделка и уплотнение оконных блоков в подъездах1) Снижение инфильтрации через оконные блоки
2) Рациональное использование тепловой энергии
Прокладки, полиуретановая пена и др.
II. Перечень дополнительных мероприятий
Система отопления и горячего водоснабжения
13.Установка (модернизация) ИТП с установкой теплообменника отопления и аппаратуры управления отоплением1) Обеспечение качества воды в системе отопления
2) Автоматическое регулирование параметров воды в системе отопления
3) Продление срока службы оборудования и трубопроводов системы отопления
4) Рациональное использование тепловой энергии
5) Экономия потребления тепловой энергии в системе отопления
6) Устранение недотопов/перетопов
Пластинчатый теплообменник отопления и оборудование для автоматического регулирования расхода, температуры и давления в системе отопления, в том числе насосы, контроллеры, регулирующие клапаны с приводом, датчики температуры воды и температуры наружного воздуха и др.
14.Модернизация трубопроводов и арматуры системы отопления1) Увеличение срока эксплуатации трубопроводов
2) Снижение утечек воды
3) Снижение числа аварий
4) Рациональное использование тепловой энергии
5) Экономия потребления тепловой энергии в системе отопления
Современные предизолированные трубопроводы, арматура
15.Теплоизоляция внутридомовых инженерных сетей теплоснабжения и горячего водоснабжения в подвале и (или) на чердаке1) Рациональное использование тепловой энергии
2) Экономия потребления тепловой энергии в системе отопления
Современные теплоизоляционные материалы в виде скорлуп и цилиндров
16.Теплоизоляция внутридомовых трубопроводов системы отопления1) Рациональное использование тепловой энергии
2) Экономия потребления тепловой энергии в системе отопления
Современные теплоизоляционные материалы в виде скорлуп и цилиндров
17.Теплоизоляция внутридомовых трубопроводов системы ГВС1) Рациональное использование тепловой энергии
2) Экономия потребления тепловой энергии и воды в системе ГВС
Современные теплоизоляционные материалы в виде скорлуп и цилиндров
18.Установка терморегулирующих клапанов (терморегуляторов) на отопительных приборах1) Повышение температурного комфорта в помещениях
2) Экономия тепловой энергии в системе отопления
Термостатические радиаторные вентили
19.Установка запорных вентилей на радиаторах1) Поддержание температурного режима в помещениях (устранение переторов)
2) Экономия тепловой энергии в системе отопления
3) Упрочение эксплуатации радиаторов
Шаровые запорные радиаторные вентили
20.Обеспечение рециркуляции воды в системе ГВС1) Рациональное использование тепловой энергии и воды
2) Экономия потребления тепловой энергии и воды в системе ГВС
Циркуляционный насос, автоматика, трубопроводы
21.Установка (модернизация) ИТП с установкой (заменой) теплообменника ГВС и установкой аппаратуры управления ГВС1) Автоматическое регулирование параметров в системе ГВС
2) Рациональное использование тепловой энергии
3) Экономия потребления тепловой энергии и воды в системе ГВС
4) Улучшение условий эксплуатации и снижение аварийности
5) Стабилизация температуры горячей воды в точке расхода
Пластинчатый теплообменник ГВС и оборудование для автоматического регулирования температуры в системе ГВС, включая контроллер, регулирующий клапан с приводом, датчик температуры горячей воды и др.
22.Модернизация трубопроводов и арматуры системы ГВС1) Увеличение срока эксплуатации трубопроводов
2) Снижение утечек воды
3) Снижение числа аварий
4) Рациональное использование тепловой энергии и воды
5) Экономия потребления тепловой энергии и воды в системе ГВС
Современные пластиковые трубопроводы, арматура
Система холодного водоснабжения
23.Модернизация трубопроводов и арматуры системы ХВС1) Увеличение срока эксплуатации трубопроводов
2) Снижение утечек воды
3) Снижение числа аварий
4) Рациональное использование воды
5) Экономия потребления воды в системе ХВС
Современные пластиковые трубопроводы, арматура
Система электроснабжения и освещения
24.Установка оборудования для автоматического регулирования освещения помещений в местах общего пользования, включения (выключения) освещения, реагирующего на движение (звук)1) Автоматическое регулирование освещенности
2) Экономия электроэнергии
Датчики освещенности, датчики движения
25.Модернизация электродвигателей или замена на более энергоэффективные, установка частотно-регулируемых приводов1) Более точное регулирование параметров в системе отопления, ГВС и ХВС
2) Экономия электроэнергии
Трехскоростные электродвигатели, электродвигатели с переменной скоростью вращения, частотно-регулируемые приводы
26.Установка частотно-регулируемых приводов в лифтовом хозяйствеЭкономия электроэнергииЧастотно-регулируемые приводы лифтов
Дверные и оконные конструкции
27.Установка теплоотражающих пленок на окна в помещениях общего пользования1) Снижение потерь лучистой энергии через окна
2) Рациональное использование тепловой энергии
Теплоотражающая пленка
28.Установка низкоэмиссионных стекол на окна в помещениях общего пользования1) Снижение потерь лучистой энергии через окна
2) Рациональное использование тепловой энергии
Низкоэмиссионные стекла
29.Повышение теплозащиты оконных и балконных дверных блоков до действующих нормативов в помещениях общего пользования1) Снижение инфильтрации через оконные и балконные дверные блоки
2) Рациональное использование тепловой энергии
3) Увеличение срока службы оконных и балконных дверных блоков
Стеклопакеты с повышенным термическим сопротивлением
Ограждающие конструкции
30.Повышение теплозащиты пола и стен подвала до действующих нормативов1) Уменьшение охлаждения или промерзания потолка технического подвала
2) Рациональное использование тепловой энергии
3) Увеличение срока службы строительных конструкций
Тепло-, водо- и пароизоляционные материалы и др.
31.Утепление пола чердака до действующих нормативов и выше1) Уменьшение протечек, охлаждения или промерзания пола технического чердака
2) Рациональное использование тепловой энергии
3) Увеличение срока службы строительных конструкций
Тепло-, водо- и пароизоляционные материалы и др.
32.Утепление крыши до действующих нормативов и выше1) Уменьшение протечек и промерзания чердачных конструкций
2) Рациональное использование тепловой энергии
3) Увеличение срока службы чердачных конструкций
Тепло-, водо- и пароизоляционные материалы и др.
33.Заделка межпанельных и компенсационных швов1) Уменьшение сквозняков, протечек, промерзания, продувания, образования грибков
2) Рациональное использование тепловой энергии
3) Увеличение срока службы стеновых конструкций
Герметик, теплоизоляционные прокладки, мастика и др.
34.Повышение теплозащиты наружных стен до действующих нормативов1) Уменьшение промерзания стен
2) Рациональное использование тепловой энергии
3) Увеличение срока службы стеновых конструкций
Тепло- и пароизоляционные материалы, отделочные материалы, защитный слой и др.
35.Повышение теплозащиты оконных и балконных дверных блоков до действующих нормативов в помещениях собственников1) Снижение инфильтрации через оконные и балконные блоки
2) Рациональное использование тепловой энергии
3) Увеличение срока службы оконных и балконных дверных блоков
Современные стеклопакеты
36.Повышение теплотехнической однородности наружных ограждающих конструкций — остекление балконов и лоджий1) Снижение инфильтрации через оконные и балконные блоки
2) Повышение термического сопротивления оконных конструкций
3) Увеличение срока службы оконных и балконных дверных блоков
Современные пластиковые и алюминиевые конструкции
Система вентиляции
37.Ремонт или установка воздушных заслонок1) Ликвидация утечек тепла через систему вентиляции
2) Рациональное использование тепловой энергии
Воздушные заслонки с регулированием проходного сечения
Использование нетрадиционных источников энергии
38.Установка тепловых насосов для системы отопления и кондиционированияЭкономия тепловой энергииТепловые насосы для системы отопления и кондиционирования
39.Установка первой ступени приготовления горячей воды с помощью тепловых насосов1) Экономия энергии за счет использования вторичных источников тепловой энергии
2) Рациональное использование тепловой энергии
Тепловые насосы
40.Установка первой ступени приготовления горячей воды за счет утилизации тепла вентиляционных выбросов1) Экономия энергии за счет использования вторичных источников тепловой энергии
2) Рациональное использование тепловой энергии
Тепловые насосы, рекуператоры
41.Устройство гибридной системы ГВС с аккумулированием тепла и тепловыми насосами, использующими теплоту грунта и тепло вентиляционных выбросов1) Экономия энергии за счет использования вторичных источников тепловой энергии
2) Рациональное использование тепловой энергии
Тепловые насосы, рекуператоры
42.Устройство гибридной системы ГВС с использованием солнечных коллекторов воды1) Экономия энергии за счет использования вторичных источников тепловой энергии
2) Рациональное использование тепловой энергии
Солнечные коллекторы

Класс энергетической эффективности здания, таблица

Что такое энергоэффективность зданий? Это показатель того, как эффективно жилой дом пользуется любыми видами энергии в ходе эксплуатации – электрической, тепловой, ГВС, вентиляции, и т.д. Чтобы обозначить класс энергоэффективности, следует сравнить практические или расчетные параметры среднегодового расходования энергоресурсов (система отопления и вентиляционная система, горячее и холодное снабжение водой, расходы электроэнергии), и нормативные параметры этого же среднегодового значения. При выявлении энергоэффективности зданий и сооружения, а также других строительных объектов необходимо учитывать климат в регионе, уровень оборудования жилья инженерными коммуникациями и график их работы, принимать во внимание тип строительного объекта, свойства стройматериалов и множество других параметров.Фактический класс энергоэффективности здания

 

Классификация

Потребление электроэнергии контролируется домовыми учетными приборами (счетчиками), и корректируется в соответствии с нормативными требованиями. Корректировка расчета включает в себя показатели реальных погодных условий, количество проживающих в доме, и другие факторы. Такой подход к контролю расхода энергии заставляет жильцов активнее пользоваться приборами учета и контроля любых видов энергии для получения более точных данных о расходе базовых видов энергии. Кроме того, в многоквартирных домах устанавливаются общедомовые приборы учета и контроля, дополнительно помогающие определить класс энергетической эффективности здания.Пример применения расчета класса энергетической эффективности многоквартирного дома

 

Определение классов энергосбережения общественных строений и зданий жилого фонда происходит согласно СП 50.13330.2012 (старое обозначение – СНиП 23-02-2003). Классификацию оценки энергосбережения и энергоэффективности отражает таблица ниже – в ней учитываются процентные отклонения все расчетные и фактические характеристики расхода всех требуемых видов бытовой энергии от нормативных значений:

КлассОбозначениеПогрешность расчетных параметров по расходу на отопительную и вентиляционную системы строения в % от нормативногоРекомендации
При разработке проекта в вводе в эксплуатацию новых и отремонтированных объектов
А ++Очень высокий класс≤ -60Финансирование мероприятий
А +-50/-60
А-40/-50
В +Высокий класс-30/-40Финансирование мероприятий
В-15/-30
С +Нормальный класс-5/-15
С+5/-5Без финансового стимулирования
С –+15/+5
При эксплуатации строения
DСредний класс+15,1/+50Переоборудование на основе экономического обоснования
ЕНизкий класс≥ +50Переоборудование на основе экономического обоснования или снос объекта
FНизкий класс≥ +60Переоборудование на основе экономического обоснования или снос объекта
GСамый низкий класс≥ +80Снос объекта
Среднегодовой расход энергоресурсов многоквартирной постройки

Среднегодовой расход энергоресурсов

Основные показатели удельного среднегодового энергорасхода представлены в таблице выше в качестве примера, и имеют два основополагающих показателя: этажность и значения отопительного сезона в градусо-сутках. Это стандартное отражение расхода на отопление и затрат на вентиляцию, ГВС и расходы электроэнергии в общественных местах. Затраты на вентилирование и отопление должны определяться для каждого объекта по регионам. Если сравнить определяющие значения затрат энергоресурсов в нормативных параметрах, с базовыми показателями, то легко узнать и позволяет определить классы энергетической эффективности зданий, которые обозначаются на латинице символами от А ++ до G. Такое разделение по классам происходит в соответствии с правилами, разработанными по евростандартам EN 15217. Этот свод правил имеет собственную градацию по классам энергоэффективности.

По вопросам энергопотребления при электрическом отоплении дома и эксплуатации мультисплит-систем соответствующая нормативная документация и свод нормирующих правил еще не отрегулирован окончательно, поэтому при определении энергоэффективности жилого или производственного здания с такими характеристиками могут возникнуть определенные сложности. Все расходы электроэнергии, проходящие в обход общедомовых счетчиков, считаются индивидуальными затратами, но как их правильно перераспределять и учитывать, до конца не определено. Такие затраты энергии не учитываются при необходимости выяснить классы энергоэффективности здания с преобладающим электропотреблением.Энергетические затраты на отопление и ГВС

 

Классы энергоэффективности новых и эксплуатирующихся строительных объектов

Новые многоэтажные и многоквартирные дома, а также отдельные их помещения, получают свой класс энергоэффективности в обязательном порядке, а уже работающим объектам классы энергоэффективности здания присваиваются по желанию владельца недвижимости, согласно федерального закона № 261 ФЗ РФ. При этом Минстрой РФ может рекомендовать региональным инспекциям определять класс после фиксации всех показаний счетчиков, но это могут делать и органы местного управления по собственной инициативе и по ускоренной методике.

Новый строительный объект отличается от уже эксплуатирующегося по энергопотреблению тем, что некоторое время происходит усадка здания, усушка бетона, дом может быть заселен не полностью, и поэтому текущее потребление энергии следует периодически подтверждать показаниями счетчиков, а точнее – в течение пяти лет согласно приказу № 261. В течение этого времени сохраняется гарантийная ответственность строительной компании на срок гарантии для объекта. Но подтвердить существующий класс энергетической эффективности здания необходимо до окончания гарантии застройщика. При обнаружении в течение этого срока отклонений от проекта собственники жилья могут потребовать от гаранта исправить ошибки и недоделки.

Функционал объектаВнутренняя темпера­тура отопительного се­зон a 0jw, °СВнутренняя темпера­тура летнего сезонаПлощадь на одного жителя А0, м2/челТепло, выделяемое людьми д0, Вт/чТепловыделения вну­тренних источников gv, Вт/м2Среднее за месяц суточное пребывание в помещении t,чГодовое потребление электроэнергии уЕ, кВт•ч/(м2•год)Часть здания, где потребляется электро­энергия,Расход наружного воздуха на вентиля­цию vc, м3/(ч•м2)Годовой расход энергии на горячее водоснабжение %w, кВт •ч/(м2•год)
Одно- и двухквартирные жилые дома202460701,212200,70,710
Многоквартирные жилые дома202440701,812300,70,720
Административные здания2024208046200,90,710
Учебные здания2024107074100,90,710
Лечебные здания222430802,716300,7130
Здания общественного питания20245100203300,71,260
Торговые здания2024109094300,80,710
Здания спортивного назначения, исключая бассейны18242010056100,90,780
Бассейны2828206034600,70,780
Здания культуры2024580163200,8110
Промышленные здания и гаражи18242010056200,90,710
Складские здания18241001001660,90,31,4
Гостиницы202440701,812300,70,720
Здания бытового обслуживания2024208046200,90,710
Здания транспортного назначения2024208046200,90,710
Здания отдыха18242010056100,90,780
Здания специального назначения202440701,812300,70,720

В законопроекте № 261 ФЗ РФ обозначено, что при высоком классе энергетической эффективности здания (классы «В», «А», «А +», «А ++») время стабильности параметров энергопотребления должно составлять не менее 10 лет.

Как присваивается класс энергоэффективности

Для только что построенного здания класс энергоэффективности должен определять Госстройнадзор согласно поданной декларации о расходах энергоресурсов. После подачи декларации вместе с другой, установленной нормативами, документацией, Госстройнадзор присваивает зданию соответствующий класс и выдает об этом выдает заключение с присваиванием класса энергетической эффективности. Правильность заполнения декларации также контролируется Госстройнадзором. Строительные объекты, подлежащие классификации – это промышленные и жилые объекты.Пример заключения об энергоэффективности объекта

 

Определение присвоения класса упрощается, если здание уже какое-то время эксплуатируется: собственник жилья или управляющая компания подают заявку в Госжилинспекцию, а также доносят декларацию, в которой должны быть указаны показания счетчиков за текущий год. Это делается для возможности контроля правильности показаний приборов учета.

Так как на данный момент происходит пересмотр стандартов с целью перехода на европейские нормы, то классы энергоэффективности, присвоенные объектам ранее, буду пересмотрены, и им будет присвоен класс согласно модели евростандарта EN 15217. Для примера: Там нормальный класс энергетической эффективности здания согласно EN 15217 – D, нормальный уровень энергоэффективности – среднее арифметическое для половины жилого фонда строений.

Указатели класса и энергосберегающие технологии

На фасадах многоквартирных домов должны быть закреплены таблички с указанием класса энергетической эффективности здания. Кроме того, согласно закона № 261 ФЗ, в подъезде жилого дома должна на специальном стенде присутствовать дополнительная информация о классификации и ее показателях.

Также информация на табличке, кроме символов класса, должна содержать значение удельного расхода энергии на один квадратный метр площади, прописанное крупным, легко читаемым шрифтом. Рядом с этими цифрами должны быть указаны нормативные показатели этих значений.Оформление таблички и стенда по классу энергоэффективности здания

 

Одно из пожеланий Минэнерго России – внести в Приказ некоторые требования по энергоэффективности, помимо показателей и методик. Здесь существуют разные подходы: некоторые эксперты с этим не согласны.

В дальнейшем Минэнерго предусматривает новые регламенты по использованию в жилищном и промышленном строительстве некоторых эффективных и дешевых энергосберегающих технологий. Эти регламенты будут обязывать к присвоению наивысшего класса зданию, построенному с применением таких технологий.

На сегодня представляющими интерес являются две технологии, которые могут соответствовать наивысшему классу: освещение здания пир помощи светодиодных светильников, и оборудование индивидуальных тепловых пунктов (ИТП) с автоматическим погодным и даже пофасадным регулированием. Эти технологии снижают энергопотребление дома в десятки раз, одновременно обеспечивая комфортное проживание. Северные и южные фасады дома должны работать в разных тепловых режимах, что можно реализовать при помощи ИТП.

что это такое и стоит ли их строить в России? — Рамблер/новости

Если переиначить известную поговорку, то получится «Что немцу хорошо, то русскому…» И в данном случае ее можно было бы закончить так: «…и русскому тоже». Ведь технология строительства домов с минимальным энергопотреблением пришла к нам именно из Германии и становится в России все более популярной. Что же она собой представляет и из каких компонентов состоит энергоэффективный дом? Интерес к энергоэффективным домам возник после мирового энергетического кризиса 1974 г. Ученые подсчитали, что при существующих темпах использования угля, газа и нефти уже через 50 лет природные источники энергии могут иссякнуть. Тогда началась работа над проектами, способными снизить темпы энергопотребления, в том числе и в жилищном строительстве. В начале 80-х гг. специалисты Международной энергетической конференции ООН (МИРЭК) пришли к выводу о том, что современные здания обладают огромными резервами в плане повышения их энергоэффективности. Родилась идея проектирования и строительства энергоэффективных, а после удачных экспериментов — и пассивных домов, которые, с одной стороны, потребляли бы минимум энергии от внешних источников, а с другой — оказывали бы минимальное вредное воздействие на окружающую среду. В середине 90-х гг. прошлого века в немецком городе Дармштадте был основан «Институт пассивного дома». Его специалисты разработали основные положения, касающиеся проектирования и строительства пассивных зданий. Первый такой дом в истории Германии был построен в 1991 г. при поддержке Министерства экономики федеральной земли Гессен в г. Дармштадте, район Кранихштайн. Авторы архитектурной части проекта — архитекторы Ботт-Риддер и Вестермауер. Подготовкой и реализацией проекта руководил доктор Вольфганг Файст. С октября 1991 г. в этом здании проживают четыре семьи. Оно нуждается в очень незначительном количестве тепла: расход на отопление составляет меньше 1 л жидкого топлива в год на 1 м² отапливаемой площади.

На сегодняшний день в мире построено уже более 40 тысяч пассивных зданий

Скажем сразу, что абсолютно точного и единого значения термина «энергоэффективный» не существует. Скорее всего, он сугубо отечественный и родился из СНиП 23-02-2003 «Тепловая защита зданий», где одним из ключевых понятий является словосочетание «энергетическая эффективность». Энергетическую эффективность зданий устанавливают в соответствии с классификацией, данной в этом документе. Согласно ей, дома делятся на пять классов (А, В, С, Д, Е) в зависимости от величины отклонения фактического значения нормативного показателя от расчетного. Общепринято, что энергоэффективным считается здание, соответствующее классу энергетической эффективности «А» и выше.

Если суммировать все, что написано об энергоэффективном доме, то можно сказать, что это более широкое понятие, обозначающее тенденцию к экономии ресурсов, потребляемых зданием. Энергоэффективные дома могут быть построены по различным технологиям, но основным принципом проектирования таких объектов неизбежно будет использование всех возможностей сохранения в них тепла с целью максимального снижения энергозатрат.

По принятой в Европе классификации различают дома низкого и ультранизкого теплопотребления, пассивные, а также с нулевым энергопотреблением и с положительным энергобалансом.

Пассивный дом — это «классика жанра». Значение нормативного показателя для него, рассчитываемое согласно «Пакету проектирования пассивного дома» (PHPP), должно быть не более 15 кВт∙ч/м². Во-вторых, общий расход первичной энергии всеми бытовыми приборами и оборудованием на отопление, горячее водоснабжение и электропотребление не должен превышать 120 кВт∙ч/м² за год. Забегая вперед, отметим, что это лишь критерии, помогающие отнести дом к одному из перечисленных в европейской классификации типов. Главной особенностью пассивного дома, отличающей его от традиционного, является принципиально иной подход к проектированию и строительству.

Некоторые отечественные компании-застройщики, понимая перспективность энергоэффективного строительства, поспешили назвать свои новые объекты пассивными. Но на самом деле это не так. Ни один из домов, возведенных в России по технологии пассивного дома, не является в чистом виде таковым. По одной простой причине — не достигнуты показатели, указанные выше. Эти здания следует называть домами с ультранизким или низким теплопотреблением.

Нормативный показатель для дома с ультранизким теплопотреблением составляет от 16 до 35 кВт∙ч/м², с низким — 36-50 кВт∙ч/м² Приводя выше европейскую классификацию, мы упомянули дома с нулевым энергопотреблением и с положительным энергобалансом. Первые за год вырабатывают столько энергии, сколько потребляют. Вторые вырабатывают больше, чем потребляют, и продают излишки в сеть. Каким же образом это происходит? В таких зданиях обязательно смонтирована автономная солнечная энергосистема, состоящая из фотогальванических панелей и инверторного источника электроэнергии.

Объекты подключены к городской электросети, и, когда вырабатываемая солнечными батареями энергия хозяевами не расходуется (часть утренних часов и день), она поступает в городскую сеть. Когда же собственной энергии не хватает, используется электроэнергия из сети. Таким образом, дом выходит на нулевое электропотребление.

Если автономная система электроснабжения дома позволяет вырабатывать больше энергии, чем он потребляет, это здание обладает положительным энергобалансом. Подобных объектов в мире единицы, и в климате средней полосы России мечтать построить такой дом — это нечто из области фантастики.

Рассмотрим еще одно понятие — активный (англ. active house) дом. Концепция Active House базируется на следующем принципе: энергосбережение должно находиться в гармонии со здоровьем человека и сочетаться с бережным отношением к природе. То есть активный дом экологичен, но активным он назван не за это. Автоматика, установленная в здании, помогает максимально эффективно использовать естественную вентиляцию и солнцезащиту, и дом без вмешательства хозяев управляет своим микроклиматом. Если не вдаваться в нюансы, такой объект представляет собой комбинацию пассивной технологии строительства и системы «умный дом».

А теперь, когда с терминами разобрались, несколько слов о том, что представляет собой пассивный дом. В таком здании можно достичь комфортного микроклимата как в зимний период без собственной системы отопления (либо используя маломощную компактную систему), так и в летний период без системы кондиционирования. Благодаря чему это происходит?

Как известно, основные теплопотери в здании происходят через стены, кровлю и окна. В пассивном доме для возведения стен и кровли не используются какие-либо специальные «пассивные» материалы. Главная задача — создать герметичную теплозащитную оболочку-термос, не имеющую мостиков холода. Это касается не только стен и кровли, но и фундамента: еще на этапе рытья котлована происходит формирование непрерывного теплоизолирующего контура, предотвращающего контакт фундамента непосредственно с грунтом. Итак, первый «кит», на котором базируется технология пассивного дома, — мощный теплоизоляционный контур, в 2-3 раза превышающий сегодняшние нормативы. Сюда же относятся и энергосберегающие окна, разработанные специально для пассивных зданий. По сравнению с обычными окнами, они позволяют сократить теплопотери более чем на 50%. Отметим, что окна такого дома преимущественно обращены на юг, что обеспечивает достаточно большой приток энергии и света в помещение даже в северных широтах.

Второй «кит» технологии — герметичный воздухонепроницаемый контур.

Третьей составляющей является создание комфортного микроклимата с помощью грамотно организованной системы приточно-вытяжной вентиляции с рекуперацией тепла. Благодаря ей свежий воздух, поступая в помещения, нагревается в рекуператоре и, таким образом, активно участвует в процессе отопления здания.

В пассивных домах можно использовать как централизованные источники энергии, так и их комбинацию с альтернативными источниками: тепловыми насосами, солнечными коллекторами, фотогальваническими панелями, ветрогенераторами и т. д.

Система пассивного дома предъявляет жесткие требования к воздухопроницаемости и теплоизоляции здания, энергоэффективности окон и системе механической приточно-вытяжной вентиляции

В Германии стандартными считаются здания с удельным расходом тепловой энергии на отопление около 220 кВт•ч/м² в год, а у нас — до 400-600 кВт•ч/м². Сдерживающим фактором в возведении энергоэффективных объектов являлась более высокая стоимость строительства. До последнего времени цена 1 м² такого дома была в России на 8-10% больше средних показателей для обычного здания. Но технологии малоэтажного строительства совершенствуются и дешевеют.

Возможно ли построить образец классического пассивного дома в России? Да, можно с помощью эффективных утеплителей создать мощный теплоизоляционный контур. Но, как показывает практика, даже в пилотных проектах, которые реализовывались в последние несколько лет в России, далеко не всегда удавалось избежать строительных ошибок. На одном из возводимых домов в ходе проверки герметичности пароизоляционного контура и частоты крепления пароизоляции на стенах (испытания проводили специалисты «Института пассивного дома», г. Москва) было обнаружено много больших, не закрепленных скрепками к деревянному основанию участков пароизоляции на внутренних стенах. Также были выявлены негерметичные участки примыкания окон. После того как указанные дефекты устранили, объект подвергся повторной проверке, в процессе которой обнаружились места утечек воздуха в узлах примыкания пароизоляции к вертикальным окнам и пароизоляционным фартукам мансардных окон. Дефекты ликвидировали, и третья проверка установила, что достигнуты расчетные показатели воздухопроницаемости. Мы привели этот пример для того, чтобы показать: как бы грамотно ни был спроектирован энергоэффективный дом, но малейшие ошибки в ходе строительства могут свести на нет всю работу проектировщиков. В данном случае благодаря специальным испытаниям были вовремя исправлены все недочеты. А если такие испытания не проводятся?

Конечно, нет ничего невозможного. Скорее всего, со временем будут основательно отработаны технологии и строительство пассивных домов в России начнет набирать обороты. Но для того, чтобы такие дома считались пассивными, нашим специалистам все же следует пересмотреть величину нормативного показателя. Об этом, кстати, довольно часто говорят представители отечественных компаний, осваивающих строительство энергоэффективных зданий. И зерно истины здесь, безусловно, есть. Даже строжайше соблюдая все нюансы технологии пассивного дома, значения 15 кВт∙ч/м² мы сможем добиться с большим трудом из-за того, что российские климатические условия более суровые, чем европейские. И в этом случае поговорка «Что немцу хорошо…» должна бы заканчиваться так: «…то для русского не всегда подходит». Так что пока говорить о том, что в России построены пассивные дома, рано. Давайте называть вещи своими именами. А имя таким объектам — дома с ультранизким или низким энергопотреблением, энергоэффективные или, как еще называют их некоторые специалисты, — условно пассивные. Впрочем, какие бы определения мы им ни давали, это действительно современные энергоэффективные здания, за которыми будущее. И всем, кто сейчас планирует заниматься строительством собственного загородного дома, мы рекомендуем в первую очередь задуматься над тем, каким будет удельный расход тепловой энергии на его отопление и как этот нормативный показатель можно снизить.

Энергоэффективный дом. Технологии и теплоизоляционные материалы для строительства энергоэффективных домов

Возьмем в качестве примера небольшой каркасный дом общей площадью 61 м2, расположенный в Подмосковье. Выбираем тип утепляемого объекта и задаем параметры длины, ширины, этажности и высоты потолков.  В нашем случае длина 7 м, ширина 11,6 м, высота этажа 2,5 м, высота до конька 2,5 м, этаж один с эксплуатируемой мансардой. Выбираем, что необходимо утеплить с учетом конструктивных особенностей. В рассматриваемом нами доме необходимо утеплить полы по лагам на деревянных балках, каркасные стены, чердачное перекрытие по деревянным балкам и мансарду. При заполнении каждой конструкции калькулятор предлагает рекомендуемые производителем варианты материалов.

Результат представлен в удобной форме, а расчеты демонстрируют, что при желаемой температуре в помещении 20 градусов с использованием для отопления природного газа, стоимость которого составляет 6 руб/куб.м, благодаря утеплению дома удастся сократить потери тепла в среднем на 95%. Экономия на отоплении жилья по сравнению с неутепленным домом составит 17 647 руб в месяц, а это 211 767 руб в год. Применяя специализированные материалы ISOVER на основе кварца: для утепления стен это ISOVER Теплые Стены, для изоляции от холода и шума на крыше — ISOVER Теплая Крыша, а для утепления полов – это ISOVER Теплый Дом Плита, можно повысить класс энергоэффективности своего дома до А+++. Затраты на весь объем утеплителя составят 45 101 руб, что окупится всего за 3 месяца.  Расчеты сделаны на основе стоимости теплоизоляции ISOVER в он-лайн  агрегаторе ISOVER MARKET.
 


 

Экономическая целесообразность дополнительного утепления. Примеры проектов

Рассмотрим эту сторону вопроса на примере реализованных энергоэффективных домов. Первопроходцами в строительстве энергоэффективных домов являются европейские страны. Именно от них многие россияне перенимают успешный опыт и ориентируются на популярные там строительные материалы и энергоэффективные технологии. В России возведение энергоэффективных домов движется не столь активными темпами, хотя с каждым годом набирает оборот.
 
В реализации таких проектов успешно принимает участие эксперт в области энергоэффективного строительства – компания ISOVER. Эксперты делятся международным опытом и предлагают тепло- и звукоизоляционные материалы, применение которых позволяют повысить класс энергоэффективности здания до  A+++.

 

Энергоэффективный дом в Нижегородской области 

Среди реализованных объектов — дом с ультранизким потреблением энергии в Нижегородской области.  Удельное потребление энергии на отопление 165 м2 составляет  33 кВт*ч на м2 в год. Затраты на отопление электричеством зимой составили 62,58 кВт*ч в сутки при среднемесячной температуре -17°C. При круглосуточном тарифе 1,7 руб/кВт*ч это обходится в 3 200 руб в месяц. Дом построен по каркасной технологии. Для утепления полов применили материалы ISOVER общей толщиной 420 мм, для стен – минеральную вату ISOVER (толщина утепления 365 мм), в кровле толщина утеплителя ISOVER составила 500 мм. Система отопления здания – электрические низкотемпературные конвекторы, общая мощность которых 3.5 кВт. В доме организована система приточно-вытяжной вентиляции с рекуператором тепла и грунтовым теплообменником подогрева уличного воздуха. Для снабжения горячей водой установленывакуумные солнечные коллекторы.

Энергоэффективный дом в Московской области

Еще один энергоэффективный дом, построенный с участием ISOVER, — трехэтажное здание общей площадью 290,9 м2 в Чеховском районе (Московская область).  Ознакомимся с ним подробнее. Два жилых этажа и эксплуатируемая мансарда размещают кухню, гостиную, гардеробную, детскую, пять спален и четыре санузла.  Для сауны, комнаты отдыха, спортзала, а также инженерного оборудования выделены эксплуатируемая кровля и подвал. Данный энергоэффективный дом уникален как с точки зрения конструктивных особенностей, так и технологии утепления, и потребления энергии.
 
Конструктивные и дизайнерские особенности отражаются в применении двух различных систем отделки фасадов. В доме гармонично объединили вентилируемый фасад с навесными панелями из натурального дерева и штукатурный фасад.  Не допустить перегрева здания позволяет примененная европейская технология, согласно которой несущие монолитные стены здания изнутри не закрываются. Их только оштукатуривают и красят. В жаркий день такие стены забирают часть лишнего тепла, аккумулируют его и отдают ночью, обеспечивая дополнительную экономию на охлаждении и равномерно распределяя температуру во все помещения.
 
На данном объекте удалось достигнуть значительного сокращения потребления энергии на охлаждение и отопление при соответствии повышенным требованиям к уровню комфорта с помощью массивной теплоизоляционной оболочки. Она создана из эффективных тепло- и звукоизоляционных материалов ISOVER толщиной от 400 мм и более. 
 

Для утепления дома мы применили решения ISOVER, поскольку они успешно зарекомендовали себя на других энергоэффективных объектах. Удобно, что в компании  имеются квалифицированные специалисты по энергоэффективности, которые оказывают своевременную консультационную помощь», — отметил генеральный директор компании «ИнтерСтрой» Д.М. Поляк.

 
Тепло и долговечность двум навесным вентилируемым фасадам обеспечивают материалы ISOVER ВентФасад Оптима, установленные в три слоя по 120 мм и ISOVER ВентФасад Верх (30 мм). Фасады, утепленные по системе штукатурный фасад, выполнены с применением продукта ISOVER ШтукатурныйФасад в два слоя по 200 мм. Такая оболочка позволяет применять для отопления и охлаждения дома альтернативные, возобновляемые источники энергии, например, геотермальную энергию Земли.
 
В здании установлена вентиляция с рекуперацией тепла. Система отопления создана на базе теплового насоса. Расчеты показали, что удельное потребление тепловой энергии дома не превысит 35кВтч /м2год, что в разы ниже среднего потребления в России.

 
Узнав о классах  энергоэффективности зданий и сооружений, возможности их повышения для комфортных условий проживания и сокращения затрат на отопление, о базовых принципах и экономической целесообразности, дальнейшее решение в пользу строительства стандартного или энергоэффективного дома остается за вами. Делайте правильный выбор и живите долго в теплом доме. 

  Хотите посчитать, какая экономия вас ждет при использовании материалов ISOVER прямо сейчас? Перейдите в калькулятор и начните расчет!

Понравилась статья? Поделитесь ей в соцсетях.

* Расчет сделан Институтом Пассивного Дома (ИПД) для индивидуального жилого дом в г. Москва с отапливаемой площадью 160,37 м2 и утеплением толщиной 100 мм.

Что такое энергоэффективный дом

— Мы топим, топим, топим огромные дома, но кажется, что часто старанья все зазря!

Мини-тест:

  1. Если вы используете все вышеперечисленные меры – есть ли от них эффект? (да – 0 баллов, нет – 1 балл)
  2. Утеплены ли стены в вашем доме? (да – 0 баллов, нет – 1 балл)
  3. Утеплены ли крыша и фундамент? (да – 0 баллов, нет – 1 балл)

0 баллов
 – поздравляем, ваш дом прошёл тест! Тем не менее, стоит обратить внимание, достаточно ли результативны принятые меры. Например, оптимальная эффективность теплоизоляции в Центральном регионе России достигается при её толщине 100 мм для стен и 150-200 мм для кровли. Важно, какой материал использовался в качестве утеплителя, как он был смонтирован. 
1-2 балла – очевидно, что нужно заняться теплоизоляцией дома. 

Комментарий. Основа дома с низким энергопотреблением – качественная теплоизоляция. Шутка ли: через плохо утеплённые стены «уходит» 40% тепла, а через кровлю – 20%! Получается отопление «в никуда». Грамотное качественное утепление стен, подвала и кровли, отсутствие «мостиков холода» позволяет экономить колоссальное количество тепловых ресурсов. 

Основа дома с низким энергопотреблением - качественная теплоизоляция

Материалы для теплоизоляции

Идеальный материал для теплоизоляции кровли должен быть долговечным, простым в монтаже, устойчивым к воздействию влаги и перепадам температур, обеспечивающим пожарную безопасность. Теплозащита основания дома (фундамента) должна обладать высокой механической прочностью. Не стоит экономить ни на материалах, ни на площади утепления: от этого зависит и срок службы дома, и комфорт в нём. 

Теплопотери через стены здания связаны с материалом, из которого построен дом. Однако качественный утеплитель, способный надёжно удержать тепло, справится с поставленной задачей и в кирпичном строении, и в пенобетонном, и в деревянном срубе. Существует три способа утепления стен: изнутри, снаружи и внутри. Правда, последний доступен только на этапе строительства, поэтому подходит не всем. 

Вопрос, мучающий каждого домовладельца: где найти такое количество разновидностей теплоизоляционных материалов – и для кровли, и для фундамента, и для стен? На него профессионалы отвечают: не надо искать разные материалы, достаточно одного – каменной ваты. Именно она на протяжении многих лет популярна во всём мире. А для России, с её климатическими условиями, этот материал – просто находка. 

Монтаж утеплителя из каменной ваты

Исследования показали, что плита каменной ваты толщиной всего 10 см по своим теплозащитным свойствам не уступает почти 2 метрам кирпичной кладки или стене из бруса толщиной в 44 см! Это возможно благодаря строению материала: между хаотично спутанными волокнами имеется заполненное воздухом пространство. А, как известно, воздух – один из самых плохих проводников тепла. 

При правильном монтаже и эксплуатации теплоизоляция из каменной ваты будет отлично работать не менее 50 лет. Кроме того, сегодня на рынке есть материалы с поистине впечатляющим сроком службы – целый век. Например, утеплитель ЛАЙТ БАТТС СКАНДИК от датской компании ROCKWOOL, лидера в производстве данной продукции. В ассортименте компании представлены материалы, с помощью которых можно решать строительные задачи разной сложности. Что особенно удобно, производитель предлагает уже готовые системы для фасадов и кровель, включающие все необходимые и идеально соответствующие друг другу материалы для теплоизоляции и огнезащитных конструкций. 

ЛАЙТ БАТТС СКАНДИК

Итак, хозяин загородного жилья подобрал каменную вату, которая идеально подойдёт для стен, крыши и фундамента его коттеджа. Осталось рассчитать нужное количество и толщину материала. Сделать это можно самостоятельно, не выходя из дома, используя специальный калькулятор. Достаточно ввести параметры своего дома (количество этажей, размеры (длину, ширину и высоту)), указать, какие материалы использовались при строительстве, и программа выдаст соответствующие рекомендации, а также посчитает энергоэффективность здания и экономическую выгоду от реализации выбранного решения.

Так, например, для отапливаемого газом двухэтажного дома со скатной кровлей размером 6 на 8 м и высотой этажа 2,7 м, в котором деревянные перекрытия, а стены сделаны из газобетона и выполнен штукатурный фасад, калькулятор выдаёт следующие результаты:

  • Утепление стен. Минимальная рекомендуемая толщина теплоизоляции 100 мм, утеплитель ФАСАД БАТТС, количество 13,6 куб. м
  • Утепление кровли. Минимальная рекомендуемая толщина теплоизоляции 190 мм, утеплитель ЛАЙТ БАТТС СКАНДИК, количество 10,6 куб. м (800х600х100, 37 упаковок или 1200х600х100, 25 упаковок) .
  • Утепление чердачных перекрытий. Минимальная рекомендуемая толщина теплоизоляции 170 мм, утеплитель ЛАЙТ БАТТС СКАНДИК, количество 10,6 м3 (800х600х100, 37 упаковок или 1200х600х100, 25 упаковок).
  • Утепление подвальных помещений. Минимальная рекомендуемая толщина теплоизоляции 170 мм, утеплитель ЛАЙТ БАТТС СКАНДИК, количество 10,6 м3 (800х600х100, 37 упаковок или 1200х600х100, 25 упаковок).
 
При этом за отопительный период (214 дней) будет сэкономлено 49 738 кВтч энергии (до утепления дом потребляет 64 993 кВтч, после утепления – 15 255 кВтч). Расчёт показывает, что если использовать теплоизоляцию ROCKWOOL, затраты на отопление можно сократить в 4 раза! Прибавьте к этому новые окна, энергоэффективные системы отопления и вентиляции – и расходы снизятся ещё как минимум вдвое. Если же увеличить толщину теплоизоляции кровли и перекрытий до 300 мм, траты станут максимально щадящими. 

Все вышеперечисленные меры позволяют сократить энергопотребление в доме на 30-50%. Итак, энергоэффективный дом – это:

  • Окна с двухкамерным стеклопакетом
  • Отсутствие «мостиков холода»
  • Экономичная система вентиляции с рекуперацией
  • Эффективная система отопления
  • Тщательная герметизация щелей
  • Приборы с низким потреблением энергии
  • Теплоизоляция из каменной ваты толщиной 300 мм для стен и 500 мм для кровли
 
Сегодня энергоэффективное жильё может быть возведено по приемлемым ценам. Разница в стоимости квадратного метра по сравнению с обычным зданием окупается довольно быстро, за несколько лет. А вот низкие счета за отопление, электроэнергию и комфортный микроклимат в доме останутся с вами надолго!