Дифференциальный автомат схема подключения: Подключение дифавтомата — схема самостоятельного подключения дифавтомата в однофазной сети

Содержание

Подключение УЗО и дифференциального автомата

Устройство защитного отключения и дифференциальные автоматы мало отличаются по способам подключения к централизованной сети. Обычно эти изделия вешаются последовательно на входе в квартиру или дом. УЗО надежно защищает от скачка, а дифференциальный автомат быстро распознаёт нарастающий ток, а затем отключает питание. Эта связка является практически беспроигрышным вариантом, но большинство домашних электриков разводят руками при виде этих защитных мер. Они просто не знают, как всё подключить, а самостоятельно догадаться не получается. Поэтому лучше посмотреть предлагаемые нашими специалистами схемы или нанять профильных мастеров. С электричеством шутки плохи, поэтому если нет уверенности, лучше не начинать.

Три важных схемы

Естественно, что они будут показаны только для однофазного тока. С трехфазными решениями часто трудно разобраться даже опытным электрикам. Поэтому рассмотрим три базовых варианта.

Существуют и другие разновидности подключения, но всё это частные случаи с особыми требованиями.

Способ 1

Если у вас полностью отсутствует заземление, то это наиболее простая задача. Если это не многоквартирный дом с его неписанными правилами, попытайтесь создать контур.


Рис. 1 – Подключение без заземления

Установка производится непосредственно в щит на фазу. По данной схеме устройство защитного отключения стоит между вводным диффавтоматом с парой полюсов и прочими распределителями однополюсного типа. Отводы будут полностью защищены. У этого метода есть огромный недостаток. Если произошло короткое замыкание, то нельзя будет понять, где именно это случилось.

Способ 2

Это также достаточно частый случай. Здесь принимает участие однофазный счетчик (неважно, электрический это или механический тип), а также контур заземления. Лучшее решение для частного дома, стандартизованное и проверенное годами.


Рис. 2 – УЗО с прибором учёта и шиной заземления

Читатели часто задают вопросы о том, почему часто подвод проводов делается снизу или сверху. Это связано не с удобством черчения схем. Дело в том, что большинство современных моделей полностью поддерживает разностороннее подключение. Можно завести нуль в нижнюю клемму, а фазу в верхнюю, если это будет решать задачу удобства эксплуатации. Это полностью исключает вероятность возникновения ошибки, что очень выгодно новичкам. Но на всякий случай лучше прочитайте перед установкой прилагаемую инструкцию. Она может содержаться в наклейке, находящейся на корпусе.

Способ 3

А теперь представим, что на весь стояк установлено одно общее УЗО, якобы защищающее всех и вся от коротких замыканий. Но так не бывает. Если рядом пройдёт молния, то это сработает, но от неприятностей в локальной сети это ничем не поможет. Часто застройщики завлекают этим несведущих пользователей, а потом они недоумевают, почему что-то в доме сгорело.

Претензии обычно не принимаются. Спешим вас огорчить, что своё УЗО и автомат в связке всё равно придётся ставить. Но нужно делать это с умом так, что если основной вариант не сработает, вы будете защищены локальным решением. При выборе обязательно нужно подбирать устройства защитного отключения так, чтобы его порог срабатывания на местном участке был значительно выше. Такая чувствительность позволит сохранить всю бытовую технику в целости при любых обстоятельствах.


Рис. 3 – Схема сопряжения с централизованным УЗО

Основным преимуществом в данном случае является двойная защита, которая повышает степень надежности. Ток утечки может возникнуть на любом участке. Происходит своеобразная подстраховка. Недостаток же заключается в том, что суммарное обеспечение обходится слишком дорого. Централизованный пункт закладывается в стоимость квартир, а затем ещё и каждый владелец обязан делать индивидуальную покупку.

Есть ли исключения?

УЗО и диффавтоматы на подключении практически всегда одинаковы. Единственные сложности могут возникать, если с каким-нибудь редким оборудованием поставляется крайне сложная система. Тогда без профессионала обойтись нельзя, иначе цена ошибки будет слишком высока. Во всех остальных случаях можно легко справиться самостоятельно при должном уровне внимательности.

схема, видео, фото – Ремонт своими руками на m-stone.ru

 

Одной из ключевых проблем при создании систем электроснабжения является обеспечение безопасности их эксплуатации. Это было понято давно, еще на заре прихода электричества в дома и квартиры – внутренние сети стали защищаться плавкими предохранителями, известными под названием «пробки». Время шло, и системы защиты совершенствовались – они стали оберегать не только от перезагрузки или коротких замыканий, но и от случайного поражения человека электрическим током. В настоящее время основными приборами такой защиты являются автоматические выключатели и устройства защитного отключения. Своеобразным «симбиозом» этих двух приборов является дифференциальный автомат.

Подключение дифавтомата

Но этот прибор защиты лишь в том случае станет корректно выполнять возложенные на него функции, если будет правильно размещен в общей схеме домашней или квартирной электросети. Увы, в этом вопросе многие владельцы жилья, стремящиеся все и всегда делать своими руками, допускают немало ошибок. «Схалтурить» вполне могут и приглашенные «мастера» — в этой сфере частных услуг встречается немало откровенных «шабашников». Поэтому имеет смысл рассмотреть подробнее, по каким принципам осуществляется подключение дифавтомата – такая информация в любом случае будет полезной.

Содержание статьи

1 Предназначение и устройство дифференциального автомата. Его основные характеристики.1.1 Принципиальное устройство и предназначение1.2 Основные параметры дифференциальных автоматов и их маркировка2 Установка и подключение дифавтомата2.1 Электромонтажные работы2.2 Схемы подключения дифференциальных автоматов.2.2.1 Единственный дифавтомат на вводе2.2.2 Дифавтоматы на выделенных линиях2. 2.3 Селективная схема с противопожарной дифференциальной защитой2.2.4 Противопожарный дифавтомат в трехфазной сети2.2.5 Видео: Схемы подключения дифавтоматов с пояснениями мастера3 Типичные ошибки при подключении дифференциальных автоматов

Выбираем способ

Для начала разберемся с основными вариантами электромонтажных работ, т.к. домашняя электропроводка может быть однофазной (220 В), трехфазной (380 В), с заземлением и без него. К тому же изделие можно установить только на вводном щитке в квартире либо на каждую отдельную группу проводов. В зависимости от этих условий, схема подключения дифавтомата может быть немного видоизмененной, да и самой устройство будет иметь другую конструкцию (двухполюсный либо четырехполюсный).

Итак, рассмотрим по порядку каждый из способов подключения дифавтомата в щитке.

Простейшая защита

Наиболее простой способ установки – один вводной дифавтомат, обслуживающий всю квартирную проводку. В этом случае необходимо покупать мощное устройство, рассчитанное на токовую нагрузку от всех электроприборов в помещении. Недостаток такой схемы подключения заключается в том, что если защита сработает, самому найти проблемную зону будет проблематично, т.к. пробой может быть где угодно.

Обратите внимание на то, что земляной провод проходит отдельно, соединяясь с заземляющей шиной, к которой подсоединяются все PE-проводники от электроприборов. Также важный момент заключается в подсоединении нулевого проводника. Ноль, который выведен из дифференциального автомата, категорически запрещается соединять с другими нулями электросети. Это связано с тем, что по всем нулям будут проходить разные токи, которые станут причиной срабатывания аппарата.

Надежная защита

Усовершенствованным вариантом подключения дифавтомата в доме является следующая схема:

Как Вы видите, на каждую группу проводов установлено по отдельному устройству, которое сработает только в том случае, если опасная ситуация возникнет у него на «участке». В то же время остальные изделия не среагируют и будут работать в своем обыкновенном режиме. Преимущество такого варианта подключения заключается в том, что при возникновении утечки тока, короткого замыкания либо перегрузки электросети можно сразу же найти проблемный участок и переходить к его ремонту. Недостаток такого способа установки дифавтомата – повышенные материальные затраты на приобретение нескольких аппаратов.

Без заземления

Выше мы предоставили несколько примеров, в которых присутствовал заземляющий контакт. Однако на даче и в старых домах (а соответственно и со старой проводкой) использовалась двухпроводная сеть – фаза и ноль.

В этом случае подключение дифавтомата осуществлялось по следующему принципу:

Если в Вашем случае также отсутствует «земля», обязательно осуществите замену электропроводки в доме на новую, более безопасную.

В трехфазной сети

Если Вы решили установить дифавтомат в коттедже, гараже либо современной квартире, где применяется трехфазная сеть на 380В, в этом случае необходимо использовать 3 фазный автомат. На самом деле схема не будет отличаться от предыдущих, если не учитывать тот факт, что на вводе и выводе из корпуса нужно подключить по четыре жилы.

На схеме показано, как подключить трехфазный дифавтомат к сети:

Вот мы и предоставили существующие способы подключения дифференциального автомата своими руками. Наиболее правильным вариантом является тот, который с заземлением и несколькими отдельно установленными устройствами.

Также советуем просмотреть наглядную видео инструкцию с правильным подсоединением проводов:

Селективная схема

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Крепление на динрейку

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала.  Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

Схема подключения дифавтомата обычно есть на корпусе

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Подключение дифавтомата на распределительном щитке

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Если при нажатии кнопки «Т» дифавтомат сработал, он работоспособен

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Как устроен дифференциальный автомат

Дифавтоматом называется электрическое устройство, которое необходимо для защиты проводки и подсоединенных к ней изделий от больших перегрузок и утечек тока. Дифференциальный автомат представляет собой специальный аппарат, состоящий из таких функциональных частей:

Устройство защитного отключения, работа которого производится из-за подведения значения обратного тока. При работе значения обратного и входного тока способны создать одинаковые магнитные поля, которые не дают разъединить аппаратуру выключения устройства. Когда в схеме появляется утечка тока, то разница между магнитными полями переключает специальное реле и питание автоматически отключается.
Автоматический выключатель, который оборудован несколькими расцепителями. Тепловой расцепитель отключает подачу тока при обнаружении небольшой перегрузки на потребителях, к которым он подсоединен. Электромагнитный расцепитель отключает питание при возникновении короткого замыкания в сети. В разных дифференциальных автоматах применяются 2 или 4 полюсные выключатели.

Кроме этих узлов, в состав дифференциального автомата входит специальный электронный усилитель и дифтрансформатор.

Перед тем как выбирать дифавтомат, необходимо правильно проверить его работоспособность. Для этой цели в каждом устройстве существует специальная кнопка. При нажимании на нее происходит искусственное моделирование утечки тока, которое приводит к выключению устройства. Когда это условие не выполняется, то использование такого дифавтомата не допускается.

В простой бытовой электрической сети используются двухполюстные дифавтоматы. Подключение устройства выполняется по определенному принципу. Снизу дифференциального автомата подключается ноль от нагрузки, а сверху него необходимо подсоединить провода питания.

Многополюсные автоматы монтируются таким же образом, но применяются лишь в трехфазных электрических сетях напряжением 380 вольт. Их монтаж требует намного больше места на специальной рейке, чем для других модулей, потому что нужно пространство для расположения блока дифференциальной защиты.

Тем, кто серьезно занимается электроникой, будет полезна статья о практическом применении и схемах подключения ОУ LM358.

4

Эксплуатация дифференциального автомата в сети без заземления

В современных новостройках и офисах, а также на других объектах, построенных относительно недавно, чаще всего отсутствует заземление. Сегодня наблюдается постепенное отхождение от традиционных схем. Отказ от заземления связан с появлением более надёжной бытовой техники в домах.

Если в доме нет заземления и присутствует мощная техника, лучше установить УЗО

На практике дифавтомат мгновенно разрывает цепь, если человек прикасается к токоведущим проводам, либо к нетоковедущим, но оказавшимся по каким-то причинам под напряжением. Подача электричества на конкретный участок прекращается сразу же, поэтому предотвращаются риски получения серьёзных травм.

Полной замены заземлению ни одно коммутационное устройство не даёт, поэтому при наличии мощного оборудования лучше устанавливать УЗО.

Если корпус бытового прибора бьёт током, тогда лучше подумать о заземлении. Некоторые специалисты рекомендуют делать «зануление», но в случае перефазировки фаза окажется на корпусе, что крайне опасно.

Установка и подключение дифавтомата

Электромонтажные работы

Здесь, по сути, сложно выделить какие-либо особенности, отличающие установку дифференциального автомата от автоматического выключателя или УЗО. Поэтому – вкратце:

Естественно, все электромонтажные работы проводятся только в обесточенном щите. И в этом нужно убедиться, чтобы быть уверенным в безопасности на все 100%!
(MISSING)С тыльной стороны любого дифавтомата имеет фигурный паз для крепления прибора на стандартной DIN-рейке. То есть АВДТ надевается верхним выступом этого паза не рейку в планируемом месте установки, а затем подается вперед. Снизу имеется подпружиненная защелка, которая при нажатии захватит нижний выступавший край DIN-рейки, и прибор будет зафиксирован на ней.

Установить современные выключатели на стандартную DIN-рейку — минутная задача, не требующая ни специального инструмента, ни приложения больших усилий.

Если в этом имеется необходимость, можно зафиксировать расположение выключателя на самой рейке, чтобы не допустить его смещения вдоль нее. Для этого применяются специальные фиксаторы, металлические или пластиковые, которыми «подпирают» выключатель с одной или обеих сторон, в зависимости от соседства с другими приборами или отсутствии такового.

Металлические фиксаторы положения установленного на DIN-рейку прибора

Производится зачистка подключаемых к дифавтомату проводов. Лучше всего это производить специальным съемником изоляции – не повреждается сам проводник. Зачистка проводится на длину в 8÷10 мм от конца провода.

Провода рекомендуется зачищать с помощью специального съемника изоляции

После очередной тщательной проверки правильности расположения подходящих от сети и отходящих в сторону нагрузки проводов, производится их поочерёдное подключение к клеммам.

Для этого вначале ослабляется, слегка выкручивается винт клеммы. Затем зачищенный конец провода (или обжатый наконечник) заводится в клемму, так, чтобы не снаружи не оставалось открытого участка без изоляции. Затем с приложением должного усилия производите затяжка винта и проверка надежности соединения. Провод должен быть закреплен без малейшего намека на возможный люфт в клемме, не поддаваться на выдергивающее усилие.

После затяжки всех клемм и еще одной визуальной проверки правильности коммутации проводов, можно включить сеть, чтобы провести тестирование дифавтомата. Во-первых, он должен включиться и удерживаться в таком положении. Если он срабатывает сразу, в схеме допущена какая-то ошибка. Во-вторых, при включённом АВДТ нажимают на его кнопку «тест» – это должно сопровождаться мгновенным срабатыванием защиты.

Итак, совершенно очевидно, что сам по себе монтаж дифференциального автомата в щите никакой чрезвычайно большой сложности не представляет. В основном соблюдаются правила, присущие для электромонтажа любых приборов с установкой на DIN-рейку.

Как правильно собрать распределительный щит?

Профессионализм настоящего специалиста-электрика всегда выдает высокое качество, аккуратность и, если хотите, даже эстетичность монтажа электрического распределительного щита. При выполнении этой непростой задачи необходимо придерживаться определенных правил и учитывать многочисленные нюансы. Подробно о монтаже распределительного щита читайте в специальной публикации нашего портала.

Так что главная загвоздка при установке дифференциальных автоматов кроется не в установке их на рейку и подключении проводов к клеммам. Основная проблема — это правильное расположение защитного устройства в самой схеме квартирной электросети.

Схемы подключения дифференциальных автоматов.

При установке дифференциальных автоматов может использоваться несколько схем. Каждая из них обладает своими особенностями и, часто, недостатками.

Посмотрим на основные применяемые варианты.

Единственный дифавтомат на вводе

Схема такова – на вводе до счётчика установлен двухполюсный автоматический выключатель, а после – дифференциальный автомат, который «обслуживает» все линии внутренней проводки в доме или квартире. Других приборов дифференциальной защиты нет – на каждой из линий просто установлен автомат нужного номинала от коротких замыканий и перегрузки.

Единственный дифференциальный автомат установлен на вводе сразу после счетчика.

Схема, безусловно, работоспособная, но к ней сразу возникает ряд вопросов.

Первое. Раз каждая линия защищается автоматическим выключателем, то стоит ли перед ними по иерархии схемы устанавливать АВДТ? Получается, что способности дифавтомата реагировать на перегрузку или на короткое замыкание – остаются совершенно невостребованными. Видимо, здесь бы хватило и просто УЗО, которое при равных номиналах практически всегда дешевле АВДТ.
Второе. Нет никакой ясности с номиналом дифференциального тока. Если поставить, скажем, на 10 или 30 мА, то при нескольких линиях даже совершенно неопасные утечки могут в сумме вызывать частое ненужное срабатывание защиты. Если же номинал завысить, скажем, до 100 мА, то, по сути, линии остаются не защищёнными от уже очень опасных токов утечки.
Третье. Отыскать проблемный участок сети, вызывающий срабатывание защиты, будет очень проблематично.

Одним словом, схема очень далека от совершенства, и использовать ее – вряд ли разумно.

Дифавтоматы на выделенных линиях

В этой схеме, безусловно, более надежной в работе, дифференциальный автомат устанавливается на каждую линию, нуждающуюся в защите от токов утечки. Как уже говорилось выше, некоторые линии не требуют такой защиты, и их можно оставить только «под охраной» автоматических выключателей, на случай КЗ или перегрузки.

Важные линии защищены индивидуальными дифференциальными автоматами

Понятно, что такой подход потребует уже более значительных материальных затрат. Но зато и безопасность на высоте, и локализация участка с неисправностью значительно упрощается. При выбивании одного из дифавтоматов все остальные линии продолжают работать в штатном режиме.

Селективная схема с противопожарной дифференциальной защитой

УЗО или дифавтомат способны не только защищать человека от электротравм при токах утечки. При значительной утечке, измеряемой уже сотнями миллиампер, велика вероятность возникновения пожароопасной ситуации. И такое зачастую случается, причём, как правило, в самих распределительных щитах. Повреждения изоляции проводов и перемычек, нарушение правил или небрежность при выполнении монтажа — все это может привести к возникновению токов утечки, способных вызвать сильный локальный нагрев проводки со всеми вытекающими негативными последствиями.

Поэтому одной из мер по недопущению подобных явлений является установка так называемого противопожарного УЗО (или дифференциального автомата), размещаемого на вводе в «верхушке» всей иерархии схемы, сразу после вводного автомата и счетчика электроэнергии. Здесь разговор идет не столько о защите человека от поражения током, сколько о других задачах:

Это защита вводного кабеля и всей «начинки» распределительного щита от возможных токов утечки.
Защита тех линий, в которых не предусмотрена установка дифференцированных приборов.
Это дополнительная страховка на случай отказа или полного выхода из строя нижестоящих по иерархии схемы УЗО и дифавтоматов.

При использовании в качестве такой защиты АВДТ, общая схема может выглядеть, например, так:

Селективная схема с общим противопожарным УЗО или АВДТ на входе

На схеме не показано, но, как мы видели раньше, некоторые линии могут не нуждаться в дифференциальной защите и иметь только автоматические выключатели в разрыве фазы.

При таком подходе необходимо учитывать, что для корректной работы схемы должны быть выполнены следующие условия:

Номинал дифференциального тока срабатывания противопожарного УЗО или АВДТ должен быть как минимум втрое выше уставки дифавтоматов, расположенных ниже по иерархии. Вот для этих целей и выпускаются АВДТ или УЗО, рассчитанные на ток утечки в 100, 300 или 500 мА.
Время срабатывания тоже должно отличаться в бо́льшую сторону как минимум втрое. А вот это достигается установкой дифавтоматов селективного типа, то есть помеченных символом «S» — об этом говорилось выше.

Если эти условия не соблюсти, то работа схемы может превратить жизнь своих хозяев в постоянное мучение. Кого угодно «достанут» частые срабатывания АВДТ на входе с полным выключением всей домашней сети. И, естественно, с немалыми проблемами поиска повреждённого участка.

А при грамотном подборе дифавтоматов по такой схеме нарушения на одной из линий приведут только к ее отключению – остальные будут работать. Но если сработал селективный автомат, то это станет сигналом о наличии весьма серьёзной причины, поиск которой лучше начинать непосредственно от распределительного шкафа.

Противопожарный дифавтомат в трехфазной сети

Не столь часто, но все же встречается и такое, что в дом заводится трёхфазная линия питания. ее тоже можно и нужно защитить противопожарным АВДТ (УЗО).

Естественно, четырёх полюсный дифавтомат, рассчитанный для установки на трехфазную линию – это куда более сложное устройство, в  котором производится оценка дифференциальных токов и защита от перегрузки и КЗ для каждой из фаз. Но его установка подчиняется тем же правилам – на корпусе указывается расположение фазных проводов и общего нуля. Важно – не перепутать фазы на входе и выходе, чтобы работа была корректной.

Противопожарный дифавтомат на входе трехфазной сети.

Схема приведена в усечённом виде. В дальнейшем фазы распределяются так, чтобы на каждую выпадала примерно равная нагрузка. И затем уже каждая фаза может делиться на отдельные линии, которые по мере необходимости защищаются АВДТ или парой УЗО с АВ. То есть  по том же принципу, что показывался выше.

Расширить информацию по схемам подключения дифференциальных автоматов поможет предлагаемое вниманию читателей видео:

Видео: Схемы подключения дифавтоматов с пояснениями мастера

Устанавливаем изделие

После того как Вы определитесь со способом подключения, нужно переходить к не менее важному этапу – установочным работам. На самом деле установка диф автомата не представляет ничего сложного, главное делать все правильно и согласно инструкции. Чтобы читатели «Сам электрика» смогли быстро и без проблем установить дифавтомат в щитке, предоставляем следующую пошаговую инструкцию:

Осмотрите корпус на наличие дефектов и механических повреждений. Любая трещина в корпусе может стать причиной неправильной работы изделия.
Отключите электроэнергию в доме и убедитесь что напряжение в сети отсутствует, использовав индикаторную отвертку (либо мультиметр). О том, как проверить напряжение в розетке, мы рассказывали в соответствующей статье!
Установите дифавтомат на DIN-рейку, как показано на фото.
Зачистите изоляцию на подсоединяемых жилах, для этого рекомендуется использовать инструмент для снятия изоляции, который не повредит токоведущий контакт.
Подключите фазные и нулевые проводники, согласно схеме, в специальные разъемы на корпусе дифавтомата. Обращаем Ваше внимание на то, что вводные жилы обязательно должны крепиться сверху.
Включите электропитание и проверьте работоспособность устройства.

Вот и вся технология установки дифференциального автомата. Рекомендуем использовать продукцию только от известных производителей: Legrand (легранд), ABB, IEK и Dekraft (декрафт).

Также советуем Вам обязательно ознакомиться с ошибками при подключении, которые мы предоставили ниже.

Назначение, технические характеристики и выбор

Содержание статьи

1 Назначение, технические характеристики и выбор1.1 Характеристики и выбор1.1.1 Номинальный ток1.1.2 Время-токовая характеристика или тип электромагнитного расцепителя1.1.3 Номинальное напряжение и частота сети1.1.4 Номинальный отключающий дифференциальный ток или ток утечки (уставки)1.1.5 Класс дифференциальной защиты1.1.6 Номинальная отключающая способность1.1.7 Класс токоограничения1.1.8 Температурный режим использования1.1.9 Наличие маркеров о причине сработки1.1.10 Тип конструктивного исполнения1.2 Производитель и цена2 Как подключить дифавтомат2.1 Электрическое подключение2.2 Проверка работоспособности3 Схемы3.1 Простая схема3.2 Более надежная защита3.3 Селективные схемы4 Основные ошибки подключения дифавтоматов

Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

Дифавтоматы служат для защиты проводки от повышенных нагрузок и человека от поражения электротоком

Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

Обозначение дифавтоматов на схемах

Номинальный ток

Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

Четырехполюсный дифавтомат для подключения в сети 380 В

Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

Номинал дифавтомата и его время-токовая характеристика

Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

Напряжение и частота, на которые рассчитан дифференциальный автомат защиты

Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

 

 

Номинальный отключающий дифференциальный ток или ток утечки (уставки)

Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф,  посудомоечная машина и т.п.).

Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

Ток утечки или уставки на диф автомате

На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное  обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

Номинальная отключающая способность

Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

Отключающая способность дифавтомата

Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

Класс токоограничения

Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

Токоограничение дифавтомата

На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

Температурный режим использования

Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

Обозначение повышенной морозостойкости дифавтомата

Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

Наличие маркеров о причине сработки

Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Флажок, который показывает причину отключения

Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

Тип конструктивного исполнения

Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

 

Производитель и цена

В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

 

Схема подключения дифавтомата в однофазной сети

После того как выбран способ и приобретены все нужные устройства, стоит начинать монтаж дифференциальных автоматов. Сначала необходимо осмотреть дифавтомат на присутствие сколов и различных дефектов, которые способны повлиять на качество работы оборудования. Помещение отключается от электрической сети путем выключения распределительного щита. Необходимо убедиться в полном отсутствии электричества при помощи измерительного прибора или индикаторного инструмента. Дифавтомат устанавливается на специальную рейку.

При помощи пассатижей или специализированного приспособления снимается лишняя изоляция с подключаемых проводов. Далее, подсоединяются нулевые и фазные провода. На верхние разъемы устройства нужно подключить жилы питающего провода, а на нижние разъемы стоит подсоединить провода от нагрузок. Вот теперь необходимо подать питание от силового провода и проверить работу распределительного щита.

7

Особенности монтажа автоматических выключателей в электросети

От способа подключения и конкретной схемы зависят многие основные аспекты, касающиеся выбора электротехнического оборудования. После этого следует переходить к установочным работам в соответствии с требованиями техники безопасности. Несмотря на то, что дифавтомат играет важную роль, его подсоединение не вызывает особых трудностей.

Необходимо следовать следующей инструкции для правильного подключения:

1. Проверьте само устройство на предмет повреждений, потому что трещины и поломки могут привести к проблемам в дальнейшем.2. Предварительно обесточьте дом, убедитесь в том, что напряжение на проводах отсутствует (с помощью мультиметра или индикаторной отвёртки).3. Прикрепите коробку с DIN-рейкой в горизонтальном положении (воспользуйтесь уровнем для точности).4. Вытащите подключаемые жилы и зачистите изоляционную защиту на концах (используйте специальный инструмент, чтобы не нарушить целостность самой жилы).5. Фазные и нулевые проводники подключаются к специальным разъёмам, обозначенным на корпусе дифференциального автомата (крепление осуществляется сверху).6. Верните питание, проверьте корректность работы подключённых устройств.

Фактически задача сводится к тому, что к разъёмам на дифавтомате должно быть подсоединено несколько проводов. Вводные жилы L и N не должны быть снизу корпуса, а нулевой провод не нужно соединять с остальными нулями, потому что в этом случае могут происходить ложные срабатывания.

Источники:

  • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/podklyuchenie-difavtomata.html
  • https://samelectrik.ru/kak-podklyuchit-difavtomat.html
  • https://stroychik.ru/elektrika/vybor-i-podklyuchenie-difavtomata
  • https://instrument.guru/elektronika/kak-vypolnit-podklyuchenie-difavtomata-v-odnofaznoj-seti.html
  • http://obustroen.ru/inghenernye-sistemy/elektrichestvo/elektroschetchiki/podklyuchenie-difavtomata.html

 

Как подключить дифференциальный автомат

 

Решить проблему защиты проводки от перегрузок и токов утечки можнопри помощи пары устройств — защитного автомата и УЗО. Но та же задача решается  дифференциальным защитным автоматом, который объединяет в одном корпусе оба эти устройства. О правильном подключение дифавтомата и его выборе и пойдет дальше речь.

Блок: 1/5 | Кол-во символов: 327
Источник: https://stroychik.ru/elektrika/vybor-i-podklyuchenie-difavtomata

Разделы статьи

Конструктивные особенности дифференциальных автоматов

Как уже было сказано, установка в сеть дифавтомата позволяет обеспечить защиту от утечек электротока, перегрузок и сверхтоков КЗ. Этот прибор является комбинированным, и в его состав входят две основных составляющих:

  • Защитный автомат с электромагнитным (катушка) и тепловым (биметаллическая пластина) расцепителями. Первый отключает питание линии при возникновении в ней короткого замыкания, а второй обесточивает сеть при появлении нагрузки, превышающей расчетную. АВ в дифавтоматах могут иметь 2 или 4 полюса, в зависимости от того, какую сеть они защищают – однофазную или трёхфазную.

  • Устройство защитного отключения. В состав этого элемента входит реле, на которое при нормальном функционировании сети воздействуют магнитные потоки одинаковой силы, не давая разъединить линию. При возникновении утечки (ухода электричества в землю) равномерность потоков нарушается, в результате чего происходит переключение реле с обесточиванием линии.

Кроме АВ и УЗО, автомат имеет в своем составе дифференциальный трансформатор, а также электронный элемент усиления.

Блок: 2/9 | Кол-во символов: 1112
Источник: https://YaElectrik.ru/jelektroshhitok/kak-podklyuchit-difavtomat

Конструкция и принцип работы дифференциального выключателя

Все корпуса дифавтоматов изготавливаются с использованием не проводящих электрический ток материалов. На задней стенке модуля устанавливается защелка для крепления к DIN-рейки. Монтаж устройства выполняется так же, как и простого автоматического выключателя или УЗО. В однофазных сетях с напряжением 220 В устанавливаются двухполюсные модули с четырьмя контактами, для ввода и вывода фазных и нулевых проводников. В трехфазных сетях с напряжением в 380 В используются четырехполюсные дифавтоматы с восемью контактами, для подключения входных и выходных проводников трех фаз и нейтрали.

Защиту цепей электропитания в дифференциальном автомате от КЗ и перегрузок по мощности выполняет встроенный блок автоматического выключения, состоящий из механизма расцепления электрических контактных площадок, который срабатывает на выключение подачи электроэнергии при превышении расчетного тока нагрузки. Кроме этого, модуль дифавтомата снабжен специальной рейкой ручного включения/выключения. Для защиты людей и животных от удара электрическим током предназначен второй блок дифавтомата, включающий в себя управляющий дифференциальный трансформатор с электромагнитной катушкой выключения устройства, мгновенно обесточивающей сеть при опасной разнице значений между входной и выходной величиной тока.

Дифференциальные автоматические выключатели с успехом используется как в трехфазных, так однофазных линиях передачи переменного электрического тока. Эти электротехнические изделия в значительной степени повышают безопасность эксплуатации различной бытовой техники и электроприборов. Но для того чтобы дифавтомат выполнял свои защитные функции, его необходимо правильно подключить к сети, соблюдая нормы ПУЭ (правил устройства электроустановок). Ниже мы рассмотрим схемы подключения дифференциальных защитных автоматов.

Блок: 2/7 | Кол-во символов: 1869
Источник: https://ProFazu.ru/elektrooborudovanie/zaschita/podklyuchenie-difavtomata.html

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Крепление на динрейку

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала.  Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

Схема подключения дифавтомата обычно есть на корпусе

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Подключение дифавтомата на распределительном щитке

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Если при нажатии кнопки «Т» дифавтомат сработал, он работоспособен

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Блок: 3/5 | Кол-во символов: 2288
Источник: https://stroychik.ru/elektrika/vybor-i-podklyuchenie-difavtomata

Схемы подключения

Основное правило, которое должна учитывать любая схема подключения дифференциального автомата, гласит: АВДТ нужно подсоединять к фазам и нулевому проводнику исключительно той линии или ответвления, для защиты которой предназначен этот прибор.

Вводной автомат

Дифференциальный автомат в щитке в этом случае устанавливается на вводном проводе. Такая схема подключения дифавтомата получила свое название потому, что устройство защищает все группы и ветки сети, к которой оно подсоединено.

При подборе АВДТ для этой схемы необходимо учитывать все рабочие параметры линии, в том числе и потребляемую мощность. Такой способ подключения защитного устройства имеет ряд плюсов, к которым относятся:

  • Экономия, поскольку на всю сеть устанавливается единственный автомат.
  • Компактность, так как одно устройство не занимает в щитке много места.

Минусы этой схемы таковы:

  • При возникновении нарушений в сети обесточивается вся квартира или дом.
  • При любой неисправности на ее поиск и устранение уйдет много времени, поскольку нужно будет найти ветку, на которой произошел сбой, а также установить конкретную причину неполадок.

Наглядные схемы подключения дифавтоматов на видео:

Отдельные автоматы

Этот метод подключения предусматривает установку нескольких дифференциальных АВ. Установка дифавтомата производится на каждую отдельную ветку или мощный потребитель. Кроме того, дополнительный АВДТ ставится перед группой самих защитных устройств. К примеру, на осветительные приборы устанавливается один аппарат, на розеточную группу – другой, а на электроплиту – третий.

Преимуществом этого способа является максимальный уровень обеспечения безопасности, а также достаточно легкий поиск возможных неисправностей. Недостаток его – большие затраты, связанные с покупкой нескольких дифференциальных автоматов.

Блок: 4/9 | Кол-во символов: 1809
Источник: https://YaElectrik.ru/jelektroshhitok/kak-podklyuchit-difavtomat

Монтаж дифференциального автомата в распределительном щите

После выбора схемы подключения дифавтомата необходимо его правильно установить с интеграцией в электрическую сеть. Чаще всего, дифференциальный выключатель монтируется в распределительном щите, где установлен счетчик электроэнергии, но иногда набор модульных устройств устанавливают в дополнительной распределительной коробке, которая находится внутри помещения. В обеих случаях, правила и этапы подключения устройства одинаковы.

Технология монтажа дифавтомата, на первый взгляд, очень проста! Но даже такие работы можно выполнить с ошибками, о которых мы расскажем ниже.

Блок: 4/7 | Кол-во символов: 716
Источник: https://ProFazu.ru/elektrooborudovanie/zaschita/podklyuchenie-difavtomata.html

Устанавливаем изделие

После того как Вы определитесь со способом подключения, нужно переходить к не менее важному этапу – установочным работам. На самом деле установка диф автомата не представляет ничего сложного, главное делать все правильно и согласно инструкции. Чтобы читатели «Сам электрика» смогли быстро и без проблем установить дифавтомат в щитке, предоставляем следующую пошаговую инструкцию:

  1. Осмотрите корпус на наличие дефектов и механических повреждений. Любая трещина в корпусе может стать причиной неправильной работы изделия.
  2. Отключите электроэнергию в доме и убедитесь что напряжение в сети отсутствует, использовав индикаторную отвертку (либо мультиметр). О том, как проверить напряжение в розетке, мы рассказывали в соответствующей статье!
  3. Установите дифавтомат на DIN-рейку, как показано на фото.
  4. Зачистите изоляцию на подсоединяемых жилах, для этого рекомендуется использовать инструмент для снятия изоляции, который не повредит токоведущий контакт.
  5. Подключите фазные и нулевые проводники, согласно схеме, в специальные разъемы на корпусе дифавтомата. Обращаем Ваше внимание на то, что вводные жилы обязательно должны крепиться сверху.
  6. Включите электропитание и проверьте работоспособность устройства.

Вот и вся технология установки дифференциального автомата. Рекомендуем использовать продукцию только от известных производителей: Legrand (легранд), ABB, IEK и Dekraft (декрафт).

Также советуем Вам обязательно ознакомиться с ошибками при подключении, которые мы предоставили ниже.

Блок: 3/4 | Кол-во символов: 1504
Источник: https://samelectrik.ru/kak-podklyuchit-difavtomat.html

Основные ошибки подключения дифавтоматов

Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

  • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
  • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
  • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
  • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
  • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

Блок: 5/5 | Кол-во символов: 2011
Источник: https://stroychik.ru/elektrika/vybor-i-podklyuchenie-difavtomata

Что нужно помнить при подключении дифференциального автомата?

Независимо от того, в однофазную или трехфазную сеть подключается защитное устройство, при его установке должны соблюдаться нижеперечисленные правила:

  • Питающие кабели следует подсоединять к верхней части прибора, а провода, идущие на потребители – к нижней. На корпусной части большинства дифференциальных АВ имеется принципиальная схема, а также обозначение разъемов.

Очень важно правильно подключить дифавтомат, поскольку неверное подсоединение проводников с высокой долей вероятности станет причиной сгорания устройства. Если кабели недостаточно длинны, их нужно заменить или нарастить. Как вариант – аппарат можно перевернуть на ДИН-рейке, но в этом случае можно запутаться по ходу дальнейшей установки.

  • Необходимо соблюдать полярность контактов. Все защитные устройства в соответствии с международными стандартами имеют маркировку разъемов: для фазных – L, для нулевых – N. Подводящий кабель обозначается цифрой 1, а отводящий – 2. Если контакты будут подключены неправильно, то прибор, скорее всего, не сгорит, но при этом не будет реагировать на неполадки в сети.
  • Во многих аппаратах схема подключения предусматривает подсоединение всех нулевых проводников к общей перемычке. Но в случае с дифференциальным АВ этого делать нельзя, иначе питание будет постоянно отключаться. Чтобы не вызвать сбоев в работе, нулевой контакт каждого дифавтомата следует соединять только с той веткой, которую он защищает.

Блок: 6/9 | Кол-во символов: 1474
Источник: https://YaElectrik.ru/jelektroshhitok/kak-podklyuchit-difavtomat

Видео по теме

Блок: 7/7 | Кол-во символов: 55
Источник: https://ProFazu.ru/elektrooborudovanie/zaschita/podklyuchenie-difavtomata.html

Кол-во блоков: 14 | Общее кол-во символов: 20080
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://YaElectrik.ru/jelektroshhitok/kak-podklyuchit-difavtomat: использовано 3 блоков из 9, кол-во символов 4395 (22%)
  2. https://samelectrik.ru/kak-podklyuchit-difavtomat.html: использовано 2 блоков из 4, кол-во символов 4807 (24%)
  3. https://stroychik.ru/elektrika/vybor-i-podklyuchenie-difavtomata: использовано 3 блоков из 5, кол-во символов 4626 (23%)
  4. https://ProFazu.ru/elektrooborudovanie/zaschita/podklyuchenie-difavtomata.html: использовано 4 блоков из 7, кол-во символов 6252 (31%)

Ошибки при подключении УЗО и дифавтоматов

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В данной статье я познакомлю Вас с наиболее встречающимися ошибками при подключении УЗО и дифференциальных автоматов.

Ошибки при монтаже не исключены даже у опытных электриков, не говоря уже о начинающих.

Рекомендую перед прочтением ознакомиться с некоторыми моими статьями, чтобы легче воспринимать информацию:

При ошибочном подключении УЗО или дифавтоматов, они могут ложно срабатывать при отсутствии повреждений в цепи или вовсе перестанут выполнять свои функции, и в случае возникновения какого-либо повреждения, просто напросто проигнорируют его.

Большинство людей без выяснения причины предпочитают установить новое устройство взамен якобы «неисправного». Но как показывает практика, проблема от этого не решается и приходится разбираться самостоятельно или обращаться за помощью к специалистам-электрикам.

Кто из Вас пытается решить подобную проблему самостоятельно, тому в помощь и пригодится данная статья.

Основные ошибки при подключении УЗО и дифавтоматов

Вот пример схемы подключения розетки через дифавтомат.

Фаза питающего кабеля подключается непосредственно на дифавтомат на клемму (1). Ноль питающего кабеля подключается сначала на нулевую шинку N, а с нее идет уже на дифавтомат на клемму (N). Таким образом, питание подключается на верхние клеммы дифавтомата, согласно имеющейся маркировки.

Среди электриков с завидным постоянством возникают споры о том, что питание можно подключать с любой стороны, т.е. как на верхние неподвижные контакты дифавтомата (1-N), так и на нижние подвижные (2-N).

Свое мнение по этому вопросу, с учетом требований заводов-изготовителей и нормативных документов, я высказал в статье про подключение автоматических выключателей и здесь повторяться не буду. Скажу лишь одно, соблюдайте схему подключения, изображенную в паспорте или на корпусе устройства.

Защитный РЕ проводник подключен непосредственно на заземляющий контакт розетки. Обычно в щитке помимо нулевой шины N устанавливается шина РЕ (шина заземления), но под рукой на момент написания статьи у меня ее не оказалось, поэтому в примерах обойдемся без нее.

К выходным клеммам дифавтомата подключена розетка.

Пользуясь случаем, хотел бы попросить Вас при проведении электромонтажных работ не игнорировать требования к цветовой маркировке жил проводов и кабелей.

Начнем с самых простых ошибок.

1. Соединение нуля N и защитного проводника РЕ после дифавтомата

Это самая распространенная ошибка при монтаже. Рабочий ноль N соединяют перемычкой с защитным проводником РЕ после дифавтомата, например, в розетке. Так обычно делают электрики старой закалки, выполняя тем самым, как бы зануление.

В этом случае ток, прошедший через фазный полюс дифавтомата будет больше, чем ток вернувшийся через его нулевой полюс, т.к. часть тока вернется через защитный проводник РЕ, что и приведет к срабатыванию устройства.

Обратите внимание, что при таком соединении дифавтомат или УЗО невозможно будет включить. Рычажок включения сразу же будет отключаться, даже если в розетку ничего не подключено.

Да, забыл сказать, что в качестве примера в сегодняшней статье я буду использовать дифференциальные автоматы (АВДТ) серии OptiDin VD63 от всем известной компании КЭАЗ (Курский электроаппаратный завод). С компанией КЭАЗ лично я знаком очень продолжительное время через «легендарные» автоматы АП-50, а также АЕ-20 и ВА51-35, контакторы КТ6000 и КТПВ, и прочее оборудование. Думаю, что о качестве изделий КЭАЗ отдельно говорить не стоит, кто работал с ними, тот знает об их надлежащем качестве.

В настоящее время на рынке появился широкий ассортимент модульных устройств от КЭАЗ, поэтому я и решил протестировать их в данной статье на примере дифавтоматов OptiDin VD63 с номинальным током 16 (А), характеристикой «С», током уставки 30 (мА). Правда у OptiDin VD63 имеется недостаток в плане его габаритов — он занимает целых 4 модуля в щитке, когда у конкурентов дифавтоматы на напряжение 230 (В) выпускаются размером на два модуля или вовсе на один.

Отличительной особенностью дифавтоматов OptiDin VD63 является то, что у них на корпусе имеется два рычажка: один синего цвета, а другой — зеленого.

Смысл заключается в следующем.

Если при срабатывания дифавтомата зеленый рычажок остался включенным, то значит причиной отключения стал перегруз или короткое замыкание в цепи.

Если же при срабатывании дифавтомата зеленый рычажок тоже отключился, то это символизирует о том, что дифавтомат отключился по причине появления утечки в контролируемой цепи.

Согласитесь, ведь это очень удобно, когда имеется такая информация, сразу же видно причину отключения дифавтомата, либо это перегруз или короткое замыкание в цепи, либо это утечка.

Надеюсь, с первой ошибкой разобрались. Идем далее.

2. Неполнофазное подключение

Второй не менее распространенной ошибкой является «неполнофазное» подключение. При этом фазу подключают на дифавтомат, а ноль пропускают мимо, т.е. ноль для розетки подключают не к дифавтомату, а непосредственно на нулевую шинку N.

При этом кнопка «Тест» исправно работает, т.е. при ее нажатии дифавтомат отключается.

Без нагрузки дифавтомат включается, но при появлении малейшей нагрузки он срабатывает, т.к. обратный ток по нулевому полюсу протекать не будет, что и приведет к отключению дифавтомата.

Подобное «подключение» я недавно обнаружил в одном из Торговых центров при проведении приемо-сдаточных испытаний. Почему и кто так сделал — уже трудно сказать.

В принципе, данную ошибку легко обнаружить, т.к. на выходной клемме N отсутствует подключаемый проводник, чего нельзя сказать о следующей ошибке.

3. Соединение нулевого провода N после дифавтомата к общей нулевой шине N

Все аналогично предыдущей схеме, только выходной ноль N после дифавтомата сначала подключают к нулевой шине N, а уже с этой шинки подключают на нагрузку (в моем случае к розетке).

Дифавтомат без нагрузки включается, но при этом кнопка «Тест» не работает, т.е. при ее нажатии дифавтомат не отключается. В связи с этим можно сделать ошибочные выводы о том, что неисправен именно дифавтомат, а на самом деле закралась ошибка в схеме его подключения.

При включении нагрузки дифавтомат сразу же срабатывает, т.к. обратный ток будет протекать не только через нулевой полюс дифавтомата, но и через нулевую шинку, что и приведет к его отключению.

4. Ошибка в подключении одного из полюсов

Смысл этой ошибки заключается в том, что при подключении одного из полюсов меняют местами клеммы, т.е. питающую фазу подключают на верхнюю клемму (1), а отходящую фазу — на нижнюю клемму (2). Здесь все правильно. При этом питающий ноль с нулевой шинки подключают на нижнюю клемму (N), а ноль на нагрузку — на верхнюю клемму (N).

В итоге получается, что нулевой полюс подключен сонаправлено по отношению к фазному полюсу.

При таком подключении дифавтомат без нагрузки включается, но кнопка «Тест» не функционирует.

При включении в розетку какого-нибудь прибора, дифавтомат сразу же отключается, т.к. проходящие через него токи будут направлены в одном направлении и их магнитные потоки не будут компенсироваться. В связи с этим во вторичной обмотке дифференциального трансформатора будет индуцироваться ток, который и приведет к срабатыванию устройства.

5. Соединение нулей N разных групп

Здесь имеется ввиду следующее. Предположим, что у нас в щите установлен ряд дифавтоматов. Сверху они подключены шлейфом.

При подключении отходящих фаз ошибки нет — каждая фаза со своего дифавтомата идет на соответствующую розетку. А вот нулевую жилу первого кабеля  подключают на выход второго дифавтомата, а второго кабеля — на выход первого дифавтомата. Таким образом, получилось, что нули перепутаны и подключены на соседние устройства.

Ну с кем не бывает? Порой в щиток заводится не по одному десятку кабелей и не трудно перепутать при подключении какую-нибудь нулевую жилку и подсоединить ее вместо положенного устройства на соседнее.

Без нагрузки оба дифавтомата включаются.

Сначала проверим кнопки «Тест» у каждого дифавтомата в отдельности — все работает исправно. Затем проверим кнопки «Тест» при включенных обоих дифавтоматах — и здесь тоже все работает, как положено.

При включении какой-нибудь нагрузки в любую из двух розеток сразу же отключаются оба дифавтомата. Это связано с тем, что в каждом дифавтомате ток будет проходить по какому-то одному полюсу, что и вызовет его срабатывание.

А вот так должно быть подключено.

6. Объединение нулей после двух дифавтоматов

Похожая ситуация, только в этом случае случайно соединяют нули между собой разных дифавтоматов. Такое частенько случается при ошибочных соединениях в распределительной коробке.

Как же ведут себя кнопки «Тест»? 

Включаем первый дифавтомат и нажимаем на кнопку «Тест» — работает исправно. Тоже самое проводим и для второго дифавтомата — результат аналогичный.

Затем включаем оба дифавтомата и нажимаем на кнопку «Тест» первого дифавтомата — при этом отключаются оба дифавтомата. Еще раз включаем оба дифавтомата и теперь нажимаем на кнопку «Тест» уже второго дифавтомата — при этом также отключаются оба дифавтомата.

Как будут вести себя дифавтоматы при подключении нагрузки?

При включении в первую розетку какого-нибудь прибора отключаются оба дифавтомата. Аналогично и с другой розеткой. При включении во вторую розетку электрического прибора отключаются оба дифавтомата.

В заключении статьи смотрите видеоролик, где все ошибочные моменты я запечатлил на камеру:

P.S. Спасибо за внимание. По мере выявления и отыскания новых ошибок при подключении дифавтоматов и УЗО, в статью я буду вносить дополнения. Если в процессе эксплуатации и обслуживания электроустановок Вы встречались  с какими-нибудь другими ошибками, то буду благодарен, если поделитесь об этом в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Дифференциальный автомат или УЗО – какая разница и что лучше?

Содержание

УЗО и дифференциальные автоматы – многие могут не понимать их назначения или разницу между ними. Но если вы собираетесь строить дом, заменять проводку или просто живете в доме, где часто случаются перебои с электричеством, лучше разобраться в этой теме. Чтобы обеспечить себе защиту от различных аварий и поражения электрическим током, нужно понять, чем отличаются приборы, для чего они нужны и в чем их преимущества и недостатки.

Что это за устройства и для чего нужны?

Дифференциальный автомат, или автоматический выключатель дифференциального тока (АВДТ) – аппарат, защищающий проводку и оборудование от сверхтоков и токов утечки. Его устанавливают в распределительных щитах жилых и общественных домов. С дифференциальным автоматом можно не бояться короткого замыкания, утечки тока, перегрузки сети. Устройство спасет вашу жизнь и имущество при авариях и неполадках электропроводки.

Устройство защитного отключения (УЗО) – аппарат, защищающий электроприборы и проводку от токов утечки. Например, если вы случайно уронили фен в воду или взяли мокрыми руками провод с поврежденной изоляцией, УЗО уловит утечку тока, отключит напряжение во всей сети и спасет вас от удара током и пожара. Устройство устанавливается в щитке после автомата. Вместе эти два прибора действуют как дифавтомат.

Что выбрать – дифавтомат или УЗО?

1. Место в распределительном щитке

  • Дифавтомат – это небольшой прибор. Он занимает совсем немного места. Если у вас маленький щиток, лучше установить АВДТ – он точно там поместится.
  • УЗО и автомат вместе займут немало места, особенно если у приборов будет несколько полюсов. Если вы хотите защитить два кабеля, то два УЗО и два автоматических выключателя займут шесть модулей в щитке, а два АВДТ – четыре.

Но многие мастера для экономии времени и места к одному УЗО подсоединяют несколько автоматов. В этом случае для защиты трех кабелей вам нужно одно УЗО и три автомата – эти приборы займут пять модулей в щитке. А если вы защищаете три кабеля с помощью дифавтоматов, то вам нужно будет занять уже шесть модулей.

2. Сложность подключения

  • Установка АВДТ не отнимает много сил и времени. Фазу и ноль подаем на входные контакты, а после подключаем эти проводники к выходным контактам – устройство готово к работе.
  • Установить автомат и устройство защитного отключения немного сложнее. Придется делать перемычку, с помощью которой можно будет подать фазу с АВДТ на УЗО. А при подключении нескольких выключателей, нужно устанавливать еще и нулевую шину.

3. Стоимость

АВДТ часто стоит дороже, чем УЗО и автомат вместе взятые. И это при одинаковых характеристиках. Причина высокой цены в сложности устройства.

4. Трудности в поиске неисправности

  • Если сработал дифавтомат, сложно понять, почему это случилось. Произошла утечка тока, короткое замыкание или перегрузка сети – определить это в большинстве случаев может только электрик. Конечно, можно установить АВДТ со встроенной индикацией проблемы, но такая модель будет стоить дорого.
  • Если в вашем щитке устройство защитного отключения и автомат, вы сразу поймете, что случилось. УЗО указывает на утечку тока, автомат – на перегруз или короткое замыкание.

В итоге вам нужно сделать выбор:

  • универсальный и компактный, но часто менее надежный и более дорогой дифавтомат;
  • надежные и простые, но более крупные и неудобные в установке УЗО и автомат.

Посмотрите разные модели автоматов, устройств защитного отключения и дифавтоматов в каталогах – возможно, это поможет вам сделать правильный выбор.

И помните: что бы вы ни установили в своем щитке – дифференциальный автомат или УЗО + автомат – самое главное, что вы будете в безопасности.

Внешние отличия УЗО от дифавтомата

УЗО и дифференциальный автомат очень похожи. Люди часто путают их и могут, например, случайно купить и даже установить одно устройство вместо другого. Чтобы не перепутать, запоминайте отличительные признаки.

1. Надпись на корпусе

Самый простой способ отличить дифавтомат от УЗО – прочитайте название или обозначение на корпусе.

На дифференциальных автоматах, или АВДТ, встречаются такие надписи.

УЗО тоже можно отличить по надписям. Многие производители на боковой части пишут полное название устройства, а на лицевой части аббревиатуру ВД – выключатель дифференциальный.

2. Маркировка УЗО и дифавтоматов

На АВДТ перед числовым значением тока указана еще времятоковая характеристика, обозначенная буквами B, C или D.

На лицевой стороне УЗО всегда написана только величина номинального тока без букв перед числовым значением.

3. Схема подключения

Если на фазном подключении указаны обмотки теплового и электромагнитного расцепителя – перед вами дифавтомат.

На схеме УЗО таких обозначений нет.

Помните: лучше позаботиться о своей безопасности и разобраться в своем распределительном щитке. Это защитит вас от аварий, травм и других неприятностей.

Монтаж Диф автоматов (дифференциальный автомат) в квартире, доме, на предприятии

Услуги электрика по установке диф автоматов (дифференциальный автомат)

Появление огромного количества  посудомоечных, стиральных машин, бойлеров, гидромассажных ванн в квартирах, технологического оборудования на предприятиях работающего с водой, потребовали более ответственного отношения к безопасности. Вода является проводником электричества, попадая на контакты электроприборов, поврежденную изоляцию проложенных кабелей представляет серьезную угрозу здоровью и жизни человека. Монтаж диф автоматов (дифференциальный автомат) , наравне с УЗО (устройство защитного отключения) в монтажной схеме многократно уменьшают риск поражения электрическим током. Смонтированные в распределительных щитах или специальных боксах приборы защищают групповые линии работающие во влажных помещениях от несанкционированных утечек тока, дифференциальные автоматы так же от перегрузок и короткого замыкания. В компании ООО Ск «Элит-Сервис» Вы можете срочно вызвать электрика для монтажа щита и системы защиты и автоматики. . В кратчайшие сроки, удобное время специалист выедет на объект и окажет услуги в области электромонтажа, установит диф автоматы (дифференциальные автоматы) , смонтирует автоматические выключатели, УЗО (устройство защитного отключения) с соблюдением СНиПов (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок).

Для чего устанавливать диф автоматов (дифференциальный автомат

Почему монтаж  диф автомата (дифференциальный автомат) для защиты от утечки тока в электрических сетях предпочтительней. УЗО не срабатывает при перегрузках в рабочей цепи, не защищает от сверх токов, короткого замыкания,  дифференциальный автомат совмещает все эти функции. Обычный блок утечки в схеме должен обязательно монтироваться последовательно с автоматическим выключателем, что занимает дополнительное место в щите, ведет к удорожанию электромонтажных работ, усложнению дальнейшей  эксплуатации.  Диф автомат одинаково хорошо срабатывает на перегрузку и утечку тока. Напомним, при напряжении 220 вольт смертельным для человека является ток всего в 50-100 миллиампер, срабатывание устройства происходит при 10-30 миллиамперах утечки. В большинстве случаев поражение электрическим током происходит в нештатных ситуациях, повреждение изоляции проложенного кабеля, пробой на корпус и неисправность электроприборов, попадание воды в розетки, распределительные коробки. Установленный в распределительном щите диф автомат (дифференциальный автомат) защитит Вас от утечки тока, а проложенные кабели от перегрузки. Согласно ПУЭ (правила устройства  электроустановок) УЗО или ДИФ обязательно должен устанавливаться на группы питающие влажные помещения, в сухие помещениях установка обязательной не является, однако подумайте, выбор

Принцип действия ДИФа

В диф автомате как в обычном автоматическом выключателе есть два расцепителя. Тепловой, срабатывающий от перегрузки защищаемой группы и электромагнитный, отключающий линию при коротком замыкании. Аналогично УЗО в приборе используются  дифференциальный трансформатор в качестве датчика, срабатывающего при утечке тока. Принцип его работы основан на изменение дифференциального тока в проводниках, по которым электроэнергия подается на электроустановку, для которой организована защита. Без специального образования разобраться в хитросплетении терминов непросто. Упрощенная схема работы приведена на рисунке.  Монтируем  диф автомат (дифференциальный автомат) в электроцепь для защиты «Нагрузки». По линии обозначенной синим цветом ток протекает в нормальном режиме работы электрооборудования. Происходит нештатная ситуация, перегрузка — срабатывает тепловое. Короткое замыкание — приходит на помощь электромагнитный расцепитель. Самое опасное для человека утечка тока, возникающая от пробоя изоляции, попадания воды, касания оголенного провода.  Красной стрелкой на рисунке показана утечка, установленный  диф автомат (дифференциальный автомат) мгновенно отключит напряжение. Время срабатывания качественного ДИФа всего 25-30 м/секунд, ток утечки 10-30 миллиампер. Напомним, для жизни  человека опасными являются 50-100 миллиампер.

Технические характеристика наиболее популярных устанавливаемых в Санкт-Петербурге Диф автоматов

Дифференциальный автомат ABB

ABB, один из крупнейших мировых производителей электротехнического оборудования. Шведский концерн имеет производство и представительства во многих странах мира. Качество продукции очень высокое, цена вполне доступная. Компания ООО Ск «Элит-Сервис» выполняет монтаж и установку Диф автоматов (дифференциальный автомат), других комплектующих фирмы более десяти лет. За все время монтажа электропроводки нам не разу не попадалось некачественное оборудование.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

25

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

6000

Количество циклов механических

10000 


Дифференциальный автомат Legrand

Международный концерн Legrand является крупнейшим производителем электроустановочных изделий. Наша компания достаточно давно работает с комплектующими французского изготовителя. Установка  Диф автоматов (дифференциальный автомат), наравне с монтажом другого электротехнического оборудования фирмы Legrand, является приоритетом обеспечения безопасности при проведении электромонтажных работ. Хорошее соотношение цена – качество.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

25

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4000

Количество циклов механических

10000


Дифференциальный автомат Schneider electric

Всемирно известный производитель Schneider electric  , выпускающий широкий ассортимент электрооборудования относительно недавно появился на рынке Санкт-Петербурга. Зарекомендовал себя с хорошей стороны. Монтаж и установку Диф автоматов (дифференциальный автомат) изготовителя ООО Ск «Элит-Сервис» проводит более пяти лет. Электротехническое оборудование Schneider electric очень доступно в недорогих сериях.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000


Дифференциальный автомат IEK

Компаний IEK – крупнейший российский производитель электротехнической продукции. Основным плюсом является невысокая стоимость. Продукция сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах. Устанавливается Диф автоматы (дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого производственного оборудования.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000


Дифференциальный автомат DEK

Компания DEKraft является очень молодым  российский производителем электротехнической продукции. Оборудование сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах. Устанавливается Диф автоматы(дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого промышленного оборудования. Основным плюсом является невысокая стоимость.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000

 

Монтаж и установка диф автоматов (дифференциальный автомат) Что выбрать?

Характеристики пяти наиболее популярных в Санкт-Петербурге диф автоматов (дифференциальный автомат) мы рассмотрели выше, кратко описали производителей. На рынке электромонтажных работ в Санкт-Петербурге ООО Ск «Элит-Сервис» не один год. Многолетний опыт работы с оборудованием различных производителей позволяет делать определенные выводы, которыми готовы поделиться с коллегами и заказчиками. Установленные  диф автоматы и УЗО исчисляются сотнями. Когда был поставлен первый блок утечки тока вспомнить достаточно сложно. Изначально выполнялась установка дифференциальных автоматов концерна ABB. В те времена это была диковинка, СНиПы (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок)  установки блоков утечки не предусматривали.  Проблем с ДИФами и устройствами защитного отключения ABB не возникало, однако цена была достаточно высока, не все клиенты выполняя  электромонтажные работы были готовы платить за безопасность. В Санкт-Петербурге начала появляться электротехническая продукция концерна Legrand, диф автомат (дифференциальный автомат) и УЗО стоили процентов на двадцать дешевле. Компания переключилась на Legrand. Известный в Европе производитель,  французское  качество. Каково было наше удивление, когда на третьем… или четвертом объекте из пяти установленных УЗО, два были неисправны, кнопка «Тест» не работала. Несколько лет мы не устанавливали эти блоки утечки. Время прошло, «обида» улеглась, сейчас монтируем Legrand  без опасений, наверное просто не повезло, может попалась подделка, однако осадок остался. Сейчас появилось большое количество дифференциальных автоматов разных уважаемых производителей,  ABB, Legrand,  Schneider electric, Hager, Siemens, а есть такие, упоминать не хочется. Блоки утечки  Schneider electric устанавливаем достаточно недавно, нареканий нет, достойные приборы. Хочу остановиться на ДИФах IEK, DEKraft. В принципе это одно и то же. За счет низкой стоимости и Российской сертификации приборы этих компаний получили широкое распространение. Процент брака достаточно большой, устройство может проработать много лет, а иногда вылетает в первый месяц эксплуатации. Компания ООО Ск «Элит-Сервис» не дает гарантию на системы защиты и автоматики собранных на комплектующих этих фирм. Господа!  Устанавливайте диф автоматы (дифференциальные автоматы) проверенных производителей, это сохранит время, нервы и деньги. Помните, скупой платит дважды! Качественное оборудование – это Ваша безопасность.

Оптимальное соотношение цены и качества — выбор умных людей.

Вам остается только позвонить и сделать заказ.

Т. +7 (812) 740-51-93

Заказать

RS485 — Кабели RS485 — Зачем нужны 3 провода для 2 (двух) проводов RS485

RS485 требует 3 проводов и экрана. Многие говорят, что это двухпроводная сеть, но это не так. Два проводника используются для передачи сигнала дифференциального напряжения RS485. Экран подключается к заземлению только на одном конце и обеспечивает защиту от наведенного шума.

Так почему 3-й проводник?

Драйвер отправляет данные, модулируя дифференциальное напряжение. Приемник должен определять и декодировать дифференциал.Существуют ограничения на напряжения, с которыми могут работать передатчики и приемники. Эти ограничения указаны в коде. Они составляют от -7 до +12 Вольт. Что произойдет, если у вас есть два устройства и между ними существует потенциал земли 24 вольт? Вы можете видеть, что одно из устройств будет работать за пределами указанного диапазона напряжений. Хотя вы можете ожидать, что все электрическое оборудование в установке в конечном итоге подключено к одному и тому же заземлению, на практике это редко, особенно в холодном климате, где архитектура здания и мерзлый грунт могут сговориться против вас.Вот почему вам нужен 3-й провод — для подключения земли (каждого драйвера RS485) к одной и той же ссылке. Теперь нас не волнуют потенциалы земли.

Вы когда-нибудь задумывались, почему вы взорвали устройство 485 при подключении ноутбука или компьютера?

Вот в чем проблема — есть потенциал земли. Вот почему рекомендуется подключать 485-й ноутбук к ноутбуку. заземляющий провод перед подключением дифференциальных проводов.

Сможете ли вы обойтись 2 проводниками?

Да.Вот почему лабораторные или заводские испытания внезапно перестают работать при установке на объекте. В своей лаборатории или на рабочем столе вы можете быть уверены, что все устройства заземлены. Теперь, если вы измеряете разницу между заземлением драйвера RS485 на одном устройстве и другом устройстве, вы обнаружите ноль вольт.

Можете ли вы уйти без щита?

Значение щита спорно. Если вы используете витую пару и не портите скрутки, раскручивая их более чем на дюйм или два с каждого конца, то экран, вероятно, не имеет большого значения.Но, большинство кабелей поставляются с экраном. Если заделать экран непросто или вас это не беспокоит, то, по крайней мере, попросите установщика на чертежах указать, что нужно наматывать и заклеивать заземляющий провод экрана, чтобы вы могли использовать его, если хотите.

Где можно купить 3-х жильный кабель 485?

Не знаю. Купите две витые пары с общим экраном / стоком. Используйте одну пару для дифференциала и соедините проводники другой пары, чтобы получился заземляющий провод.

Проводники какого размера?

Чем больше, тем лучше.Большинство установок выполняется с 24AWG, но помните, что чем выше скорость передачи, тем выше частота сигнала и тем больше всевозможные ограничения и индуктивные эффекты. Если есть возможность, возьмите проводников побольше.

Какой кабель?

Выберите тот, который обеспечивает почти постоянный номинальный импеданс, потому что он упростит добавление согласующих резисторов — просто прочитайте оболочку кабеля и получите резистор с таким же сопротивлением. Большинство кабелей, перечисленных для использования 485, имеют почти постоянный номинальный импеданс.Почти постоянный означает кабель, сопротивление которого не зависит от длины.

А как насчет смещения?

Если драйвер RS485 бездействует, то что? Линия отключена от драйвера в состоянии ожидания, что означает, что + и — плавающие. Что произойдет, если на мгновение появится перепад напряжения более 0,2 Вольт? Что ж, разница больше 0,2 считается сигналом и, следовательно, представляет собой шум данных. Решите эту проблему, отключив линии от напряжения, когда они простаивают.Для этого подключите их к земле или другому напряжению, используя подтягивающие / понижающие резисторы. Хорошие продавцы включают это. Более хорошие производители предоставляют выбор резисторов смещения, выбираемых переключателями / перемычками. Причина, по которой вы не всегда можете использовать одно и то же значение, заключается в том, что совокупный эффект резисторов смещения многих устройств может вообще сделать невозможным передачу сигнала. Как рассчитать номинал резистора смещения? Как бы вы узнали, где его подключить? Хороший удачи получить ответы на эти вопросы.Более простой вопрос: как узнать, нужно ли смещать состояние ожидания? Если у вас есть осциллограф, вы можете увидеть, что такое плавающие напряжения в состоянии покоя? Не надо забудьте, что вы можете измерить это, только когда устройство находится в режиме ожидания.

Несимметричный / дифференциальный тип

Для аналоговых входов Beckhoff проводит основное различие между двумя типами: несимметричный (SE) и дифференциальный (DIFF) , имея в виду разницу в электрическом подключении относительно разности потенциалов. .

На схеме показаны двухканальные версии модуля SE и модуля DIFF в качестве примеров для всех многоканальных версий.

SE и модуль DIFF как 2-канальная версия

Примечание. Пунктирные линии указывают на то, что соответствующее соединение может не обязательно присутствовать в каждом модуле SE или DIFF. Электрические изолированные каналы в целом работают по дифференциальному типу, следовательно, нет никакой прямой связи (гальванической) с землей внутри модуля. Действительно, необходимо учитывать указанную информацию о рекомендуемых и максимальных уровнях напряжения.

Основное правило:

  • Аналоговые измерения всегда принимают форму измерения напряжения между двумя потенциальными точками.
    Для измерения напряжения используется большое R, чтобы обеспечить высокий импеданс. Для измерения тока в качестве шунта используется маленький R. Если целью является измерение сопротивления, применяются соответствующие соображения.
    • Beckhoff обычно называет эти две точки входным + / сигнальным потенциалом и входным / опорным потенциалом.
    • Для измерения между двумя потенциальными точками необходимо подавать два потенциала.
    • Что касается терминов «однопроводное соединение» или «трехпроводное соединение», обратите внимание на следующее для чисто аналоговых измерений: трех- или четырехпроводные соединения могут использоваться для питания датчика, но не участвуют в фактическом аналоговом измерении. измерение, которое всегда происходит между двумя потенциалами / проводами.
      В частности, это также относится к SE, хотя этот термин предполагает, что требуется только один провод.
  • С термином «гальваническая изоляция» следует уточнить заранее.Модули ввода-вывода
    Beckhoff имеют от 1 до 8 аналоговых каналов; Что касается соединения каналов, различие проводится в следующих терминах:
    • , как каналы ВНУТРИ модуля соотносятся друг с другом, или
    • , как каналы НЕСКОЛЬКИХ модулей соотносятся друг с другом.

  • Свойство гальванической развязки показывает, подключены ли каналы напрямую друг к другу.
    • Клеммы / коробки Beckhoff (и соответствующие группы продуктов) всегда имеют гальваническую развязку между полевой / аналоговой стороной и стороной шины / EtherCAT.Другими словами, если две аналоговые клеммы / коробки не соединены через силовые контакты (кабель), модули эффективно электрически изолированы.
    • Если каналы в модуле электрически изолированы, или если одноканальный модуль не имеет силовых контактов, каналы фактически всегда являются дифференциальными. См. Также пояснительные примечания ниже. Дифференциальные каналы не обязательно электрически изолированы.
  • Аналоговые измерительные каналы подлежат техническим ограничениям, как с точки зрения рекомендуемого рабочего диапазона (непрерывная работа), так и предела разрушения.Дополнительные сведения см. В документации к соответствующей клемме / коробке.

Пояснение

  • дифференциал (DIFF)
    • Дифференциальное измерение — наиболее гибкая концепция. Пользователь может свободно выбирать точки подключения, входной + / сигнальный потенциал и вход- / опорный потенциал в рамках технической спецификации.
    • Дифференциальный канал также может работать как SE, если опорный потенциал нескольких датчиков связан.Это соединение может происходить через системную GND.
    • Поскольку дифференциальный канал имеет внутреннюю симметричную конфигурацию (см. Рис. SE и модуль DIFF как 2-канальный вариант), между двумя подаваемыми потенциалами будет средний потенциал (X), который совпадает с внутренним заземлением / опорная земля для этого канала. Если несколько каналов DIFF используются в модуле без гальванической развязки, техническое свойство V CM (синфазное напряжение) указывает степень, в которой среднее напряжение каналов может отличаться.
    • Внутреннее опорное заземление может быть доступно в качестве точки подключения на клеммной коробке / коробке для стабилизации определенного потенциала GND в клеммной коробке / коробке. В этом случае особенно важно обратить внимание на качество этого потенциала (бесшумность, стабильность напряжения). К этой точке GND можно подключить провод, чтобы убедиться, что V CM, max не превышается в кабеле дифференциального датчика.
      Если дифференциальные каналы не изолированы гальванически, обычно допускается только один V CM, макс. .Если каналы электрически изолированы, этот предел не применяется, и напряжения каналов могут отличаться до указанного предела разделения.
    • Дифференциальное измерение в сочетании с правильной разводкой датчика имеет особое преимущество, заключающееся в том, что любые помехи, влияющие на кабель датчика (в идеале, линия подачи и обратка расположены рядом, так что сигналы помехи оказывают одинаковое влияние на оба провода), оказывают очень незначительное влияние при измерении, поскольку потенциал обеих линий изменяется совместно (отсюда и термин «общий режим»).Проще говоря: синфазные помехи одинаково влияют на оба провода с точки зрения амплитуды и фазы.
    • Тем не менее, подавление синфазных помех внутри канала или между каналами подчиняется техническим ограничениям, которые указаны в технических характеристиках.
    • Дополнительную полезную информацию по этой теме можно найти на странице документации Конфигурация дифференциальных входов 0 / 4..20 мА (см., Например, документацию по клеммам EL30xx).
  • Односторонний (SE)
    • Если аналоговая схема спроектирована как SE, входной / опорный провод внутренне фиксируется на определенном потенциале, который нельзя изменить. Этот потенциал должен быть доступен снаружи по крайней мере в одной точке для подключения опорного потенциала, например через силовые контакты (кабель).
    • Другими словами, в ситуациях с несколькими каналами SE предлагает пользователям возможность избежать возврата хотя бы одного из двух кабелей датчика к клеммной коробке / коробке (в отличие от DIFF).Вместо этого контрольный провод может быть закреплен на датчиках, например в системе GND.
    • Недостатком этого подхода является то, что отдельные линии подачи и возврата могут привести к изменениям напряжения / тока, с которыми канал SE может больше не справиться. См. Синфазные помехи. Эффект V CM не может возникнуть, так как каналы модуля всегда «жестко подключены» через входной / опорный потенциал.

Преобразователи / датчики / полевые устройства тока (далее именуемые просто «датчиком») с промышленным интерфейсом 0 / 4-20 мА обычно имеют внутреннюю электронику преобразования для физических измеряемых величин (температура, ток и т. Д.)) на текущем управляющем выходе. На эту внутреннюю электронику должна подаваться энергия (напряжение, ток). Таким образом, тип кабеля для этого источника питания разделяет датчики на с автономным питанием или с внешним питанием датчики:

  • Датчик потребляет энергию для своей собственной работы через датчик / сигнальный кабель + и -.
    Чтобы всегда было достаточно энергии для собственной работы датчика и было возможно обнаружение обрыва цепи, для интерфейса 4-20 мА был указан нижний предел 4 мА; я.е. датчик пропускает минимальный ток 4 мА и максимальный ток 20 мА.
  • 2-проводное подключение см. Рис. 2-проводное подключение , см. Рис. IEC60381-1
  • Такие преобразователи тока обычно представляют собой приемник тока и, таким образом, предпочитают находиться между + и — в качестве «переменной нагрузки». См. Также информацию производителя датчика.
2-проводное соединение

Следовательно, они должны быть подключены в соответствии с терминологией Beckhoff следующим образом:

предпочтительно к «несимметричным» входам , если также должны использоваться соединения + питания клеммы / коробки — подключаются к + Supply и Signal

, однако они также могут быть подключены к «дифференциальным» входам , если оконечная нагрузка на GND затем производится на стороне приложения — для подключения с правильной полярностью к + Signal и –Signal
Важно обратиться к информационной странице. Конфигурация 0/4.Дифференциальные входы 0,20 мА (см., Например, документацию на клеммы EL30xx)!

  • 3- и 4-проводное подключение см. Рис. Подключение датчиков с внешним питанием , ср. IEC60381-1
  • датчик получает энергию / рабочее напряжение для своей работы от двух собственных питающих кабелей. Один или два дополнительных кабеля датчика используются для передачи сигнала токовой петли:
    • 1 кабель датчика: согласно терминологии Beckhoff такие датчики должны быть подключены к «несимметричным» входам тремя кабелями с + / — / Сигнальные линии и, при необходимости, FE / экран
    • 2 кабеля датчика: для датчиков с 4-проводным подключением на основе + питания / -питания / + сигнал / -сигнал, проверьте, может ли + сигнал быть подключен к + питанию или –сигналу поставлять.
    • — Да: тогда вы можете подключиться соответственно к «несимметричному» входу Beckhoff .
    • — Нет: должен быть выбран «дифференциальный» вход Beckhoff для + -сигнала и -сигнала; + Питание и –Питание подключаются дополнительными кабелями.
      Важно обратиться к информационной странице Конфигурация дифференциальных входов 0 / 4..20 мА (см., Например, документацию на клеммы EL30xx)!

Примечание: экспертным организациям, таким как NAMUR, требуется полезный диапазон измерения <4 мА /> 20 мА для обнаружения и настройки ошибок, см. Также NAMUR NE043.
Обратитесь к документации устройства Beckhoff, чтобы узнать, поддерживает ли соответствующее устройство такой расширенный диапазон сигнала.
Обычно в униполярных клеммах / коробках (и в соответствующих группах изделий) имеется внутренний диод, в этом случае необходимо соблюдать полярность / направление тока.

Подключение датчиков с внешним питанием

Классификация клемм / коробок Beckhoff — клеммы / коробки Beckhoff 0 / 4-20 мА (и соответствующие группы изделий) доступны как дифференциальные и несимметричные клеммы / коробки (и сопутствующие изделия группы):

односторонний

EL3x4x: 0-20 мА, EL3x5x: 4-20 мА; KL и связанные группы продуктов точно такие же

Дифференциал

EL3x1x: 0-20 мА, EL3x2x: 4-20 мА; KL и связанные группы продуктов точно такие же

Предпочтительное направление тока из-за внутреннего диода

Предпочтительное направление тока из-за внутреннего диода

Предназначен для подключения внешних датчиков с 3/4-проводным подключением

Клеммная коробка представляет собой пассивное устройство измерения дифференциального тока; пассивный означает, что на датчик не подается питание.

Предназначен для подключения датчиков с автономным питанием с 2-проводным подключением

Emerson Exchange 365

Во-первых, аналоговые входы серий M и S являются несимметричными, а не дифференциальными. Упрощенные принципиальные схемы каналов AI 4–20 мА в электронной документации показывают, что 8 или 16 входов имеют общий общий постоянный ток.

Дифференциальный вход может быть плавающим или изолированным.Плата 0-10 В AI является примером дифференциального входа.

8-канальная карта серии M может использоваться с 4-проводной клеммной колодкой, которая предоставляет общие ссылки для каждого канала. Это позволяет 4-проводному устройству подавать изолированный сигнал 4-20 мА на канал AI. Сигнал заземляется на карте DeltaV, поэтому выход преобразователя 4–20 мА должен быть изолирован.

8-канальная клеммная колодка серии S имеет три клеммы на канал: 24 В постоянного тока, сигнальный и общий. Вы можете использовать его для подключения двух- или четырехпроводного сигнала к любому каналу.Опять же, сигналы должны быть изолированы в поле, поскольку они связаны с землей в плате AI.

Если вы подключаете полевую проводку к клеммной колодке с перекрестным подключением к клеммам платы ввода-вывода DeltaV, вы можете иметь общие сигнальные клеммы в клеммной колодке и подключать их к общему проводу постоянного тока, а затем пропустить сигнальный провод к клеммной колодке. Сигнальная клемма клеммной колодки AI на 2-проводной клемме и подает на датчик отдельные сигналы питания. Однако при этом внутренний сигнальный провод остается незащищенным.Это может помешать обмену данными HART. Если используется устройство HART, вы должны подключить сигнальную пару напрямую к клеммной колодке правильного типа, чтобы экран защищал сигнал на всем пути до клеммной колодки ввода-вывода.

Если вы хотите использовать внешний источник питания для питания 2-проводных устройств и подключить их к каналам AI DeltaV, вы можете это сделать. Подайте 24 В постоянного тока на клемму с предохранителем и соседнюю клемму возврата сигнала. Подключите полевое устройство к этим двум клеммам и подключите сигнал к сигнальной клемме платы AI.Опять же, вы подвергаете неэкранированный одиночный сигнальный провод воздействию шума. Скручивание двух проводов — важная защита от шума.

Каналы AI DeltaV обеспечивают ограничение тока в каждом канале, что предотвращает повреждение проводки. Если провода закорочены, карта AI определяет состояние короткого замыкания, и ток ограничивается, чтобы не было повреждений и не перегорел предохранитель. Когда неисправность провода устранена, сигнал возвращается. При использовании предохранителя состояние короткого замыкания немедленно заменяется состоянием разомкнутого контура, когда предохранитель перегорает.И вам придется заменить предохранитель.

Ограничение тока в мощности канала вызывает падение напряжения внутри карты, пропорциональное сигналу. Таким образом, при 20 мА сигнал падает на 5 вольт на нагрузочном резисторе канала и на пару вольт на цепи ограничения тока. Доступное напряжение на передатчике при 20 мА может быть ограничено примерно до 16 вольт. Если у вас есть передатчики, которым требуется больше, чем это для полноценной работы, источник питания Buss Power 24 В постоянного тока может быть увеличен (не более 26 В постоянного тока), чтобы обеспечить дополнительное напряжение на передатчике при полной мощности.В качестве альтернативы вы можете запитать передатчик от внешнего источника для получения максимального напряжения на передатчик. Большинство 2-проводных передатчиков работают при напряжении ниже 15 В при полном сигнале. Если на длинной проводке малого калибра наблюдается чрезмерная потеря напряжения, для ее преодоления может потребоваться дополнительное напряжение.

Если эти ненормальные условия не существуют, вам следует просто использовать питание шинного поля через карту AI и избегать перегорания предохранителей.

Андре Дикэр

Высокоточный цифровой датчик давления с микродифференциальным давлением [для газа] DP-M (Продукция, снятая с производства) Схема ввода / вывода и электрические схемы | Средства автоматизации | Промышленные устройства

[Объявление о техническом обслуживании системы] Информируем, что веб-сайт Automation Controls будет недоступен в воскресенье, 7 ноября 2021 г., , с 2:00 до 7:00 (GMT) .


Японский Английский Английский (Азиатско-Тихоокеанский регион) Китайский (упрощенный) Китайский (традиционный) Корейский


Сожалеем, продукция снята с производства. См. Подробную информацию о продуктах, снятых с производства, и списке рекомендованных заменителей ниже.

30 сентября 2019

Цепи ввода / вывода и электрические схемы

Схема входов / выходов

Примечание: Аналоговый токовый выход оборудован только DP-M2A.
Аналоговый токовый выход DP-M2A не имеет схемы защиты от короткого замыкания. Не подключайте его напрямую к источнику питания или емкостной нагрузке.
Символы ・ ・ ・ D: Диод защиты от обратной полярности питания
Z D1 , Z D2 : Стабилитрон поглощения перенапряжения
Tr: Выходной транзистор NPN

Схема подключения

Примечание: Белый провод оснащен только DP-M2A.

Вернуться к началу

Вернуться к началу


Ричард Фейнман и машина связи

У. Дэниэл Хиллис для Physics Today

Однажды, когда я обедал с Ричардом Фейнманом, я сказал ему, что планирую основать компанию по созданию параллельного компьютера с миллионом процессоров.Его реакция была однозначной: «Это определенно самая глупая идея, которую я когда-либо слышал». Для Ричарда безумная идея была возможностью либо доказать, что она ошибочна, либо доказать, что она верна. В любом случае он был заинтересован. К концу обеда он согласился провести лето в компании.

Интерес Ричарда к вычислениям возник еще в те дни, когда он жил в Лос-Аламосе, где он руководил «компьютерами», то есть людьми, которые работали с механическими калькуляторами. Там он сыграл важную роль в создании некоторых из первых программируемых счетных машин для физического моделирования.Его интерес к этой области возрос в конце 1970-х, когда его сын Карл начал изучать компьютеры в Массачусетском технологическом институте.

Я познакомился с Ричардом через его сына. Я был аспирантом лаборатории искусственного интеллекта Массачусетского технологического института, и Карл был одним из студентов, помогавших мне с моим дипломным проектом. Я пытался сконструировать компьютер достаточно быстро, чтобы решать проблемы здравого смысла. Эта машина, как мы ее предполагали, будет содержать миллион крошечных компьютеров, соединенных коммуникационной сетью.Мы назвали это «машиной связи». Ричард, всегда интересовавшийся деятельностью сына, внимательно следил за проектом. Он скептически относился к этой идее, но всякий раз, когда мы встречались на конференции или я посещал Калифорнийский технологический институт, мы не спали до раннего утра, обсуждая детали запланированной машины. В первый раз он, казалось, поверил, что мы действительно собираемся попытаться построить его, было на обеденной встрече.

Ричард прибыл в Бостон на следующий день после регистрации компании.Мы были заняты сбором денег, поиском места для аренды, выпуском акций и т.д. долларов в банке. Несколько месяцев никто не думал ни о чем техническом. Мы спорили о том, как должно называться название компании, когда Ричард вошел, отсалютовал и сказал: «Ричард Фейнман явился на службу.Хорошо, босс, какое у меня задание? »Собравшаяся группа студентов MIT была поражена.

После поспешного частного обсуждения («Я не знаю, вы наняли его …») мы сообщили Ричарду, что его задание будет заключаться в консультировании по применению параллельной обработки к научным задачам.

«Звучит как вздор», — сказал он. «Дай мне что-нибудь реальное».

Итак, мы отправили его купить канцелярские товары.Пока его не было, мы решили, что больше всего нас беспокоит маршрутизатор, который доставляет сообщения от одного процессора к другому. Мы не были уверены, что наш дизайн сработает. Когда Ричард вернулся с покупки карандашей, мы дали ему задание разобрать роутер.

Машина

Маршрутизатор машины подключения был частью оборудования, которое позволяло процессорам обмениваться данными.{12] $ провода. Вместо этого мы планировали соединить процессоры в 20-мерный гиперкуб, чтобы каждому процессору нужно было напрямую общаться только с 20 другими. Поскольку множеству процессоров приходилось обмениваться данными одновременно, многие сообщения будут конкурировать за одни и те же провода. Задача маршрутизатора заключалась в том, чтобы найти свободный путь через эту 20-мерную пробку или, если он не мог, удерживать сообщение в буфере, пока путь не станет свободным. Наш вопрос Ричарду Фейнману заключался в том, предоставили ли мы достаточно буферов для эффективной работы маршрутизатора.

В течение первых нескольких месяцев Ричард начал изучать принципиальные схемы маршрутизатора, как если бы они были объектами природы. Он был готов выслушать объяснения того, как и почему все работает, но в основном он предпочитал выяснять все сам, моделируя действие каждой из схем карандашом и бумагой.

Тем временем, остальные из нас, счастливые найти что-то, чем занять Ричарда, занялись заказом мебели и компьютеров, наняли первых инженеров и договорились о том, что Агентство перспективных исследовательских проектов Министерства обороны (DARPA) заплатит. на разработку первого прототипа.Ричард проделал замечательную работу, сосредоточившись на своем «задании», лишь изредка останавливался, чтобы помочь подключить компьютерный зал, настроить механический цех, обменяться рукопожатием с инвесторами, установить телефоны и весело напомнить нам о том, какими сумасшедшими мы все были. Когда мы наконец выбрали название компании Thinking Machines Corporation, Ричард был в восторге. «Это хорошо. Теперь мне не нужно объяснять людям, что я работаю с кучкой психов. Я могу просто назвать им название компании.«

Техническая сторона проекта явно выходила за рамки наших возможностей. Мы решили упростить задачу, начав с 64 000 процессоров, но даже тогда объем работы был огромным. Нам пришлось разработать собственные кремниевые интегральные схемы с процессорами и маршрутизатором. Нам также пришлось изобрести механизмы упаковки и охлаждения, написать компиляторы и ассемблеры, разработать способы одновременного тестирования процессоров и так далее. Даже простые проблемы, такие как соединение плат вместе, приобрели совершенно новый смысл при работе с десятками тысяч процессоров.Оглядываясь назад, можно сказать, что если бы у нас было хоть какое-то представление о том, насколько сложным будет проект, мы бы никогда не начали.

«Организуйте этих парней»

Я никогда раньше не управлял большой группой, и я был явно не в себе. Ричард вызвался помочь. «Мы должны организовать этих ребят», — сказал он мне. «Позвольте мне рассказать вам, как мы сделали это в Лос-Аламосе».

У каждого известного мне великого человека было определенное время и место в жизни, которые они использовали в качестве ориентира; время, когда все работало так, как должно, и великие дела были достигнуты.Для Ричарда это время было в Лос-Аламосе во время Манхэттенского проекта. Всякий раз, когда что-то становилось «дерзким», Ричард оглядывался назад и пытался понять, чем сейчас было иначе, чем тогда. Используя этот подход, Ричард решил, что мы должны выбрать эксперта в каждой важной области машины, такой как программное обеспечение, упаковка или электроника, чтобы стать «лидером группы» в этой области, по аналогии с лидерами группы в Лос-Аламосе.

Часть вторая кампании Фейнмана «Давайте организовываться» заключалась в том, что мы должны начать регулярную серию семинаров с приглашенными докладчиками, которые могут иметь интересные дела с нашей машиной.Идея Ричарда заключалась в том, что мы должны сосредоточиться на людях с новыми приложениями, потому что они будут менее консервативны в отношении того, какой компьютер они будут использовать. На наш первый семинар он пригласил Джона Хопфилда, своего друга из Калифорнийского технологического института, чтобы он рассказал нам о своей схеме построения нейронных сетей. В 1983 году изучение нейронных сетей было таким же модным, как изучение ESP, поэтому некоторые люди считали Джона Хопфилда немного сумасшедшим. Ричард был уверен, что ему подойдет компания Thinking Machines Corporation.

Хопфилд изобрел способ построения [ассоциативной памяти], устройство для запоминания паттернов. Чтобы использовать ассоциативную память, ее тренируют на серии шаблонов, таких как изображения букв алфавита. Позже, когда в памяти появляется новый образец, он может вспомнить аналогичный образец, который он видел в прошлом. Новое изображение буквы «А» будет «напоминать» воспоминание о другой букве «А», которую она видела ранее.Хопфилд выяснил, как такую ​​память можно построить с помощью устройств, похожих на биологические нейроны.

Похоже, что метод Хопфилда не только работал, но и хорошо работал на Connection Machine. Фейнман выяснил детали того, как использовать один процессор для моделирования каждого из нейронов Хопфилда, с силой связей, представленной в виде чисел в памяти процессоров. Из-за параллельной природы алгоритма Хопфилда все процессоры можно было использовать одновременно со 100% эффективностью, поэтому Connection Machine будет в сотни раз быстрее, чем любой обычный компьютер.

Алгоритм для логарифмов

Фейнман довольно подробно разработал программу для вычисления сети Хопфилда на Connection Machine. Больше всего он гордился подпрограммой для вычисления логарифмов. Я упоминаю об этом здесь не только потому, что это умный алгоритм, но и потому, что это особый вклад Ричарда в мейнстрим информатики. Он изобрел его в Лос-Аламосе.

Рассмотрим задачу поиска логарифма дробного числа от 1.{-k] $ может использоваться всеми процессорами. Все вычисления заняли меньше времени, чем деление.

Концентрация на алгоритме простой арифметической операции была типичной для подхода Ричарда. Ему нравились детали. Изучая маршрутизатор, он обращал внимание на действие каждого отдельного гейта, а при написании программы настаивал на понимании реализации каждой инструкции. Он не доверял абстракциям, которые не могли быть напрямую связаны с фактами.Когда несколько лет спустя я написал для [Scientific American] интересную статью о машине подключения, он был разочарован тем, что в ней упущено слишком много деталей. Он спросил: «Откуда кто-то должен знать, что это не просто чушь?»

Настойчивость Фейнмана в рассмотрении деталей помогла нам раскрыть потенциал машины для численных вычислений и физического моделирования. В то время мы убедили себя, что машина соединений не будет эффективна при «обработке чисел», потому что у первого прототипа не было специального оборудования для векторов или арифметики с плавающей запятой.Оба эти требования были «известны» как требования для обработки чисел. Фейнман решил проверить это предположение на проблеме, с которой он был подробно знаком: квантовой хромодинамике.

Квантовая хромодинамика — это теория внутреннего устройства атомных частиц, таких как протоны. Используя эту теорию, в принципе возможно вычислить значения измеримых физических величин, таких как масса протона. На практике для таких вычислений требуется столько арифметических операций, что самые быстрые компьютеры в мире могут быть загружены ими на долгие годы.Один из способов сделать это вычисление — использовать дискретную четырехмерную решетку для моделирования части пространства-времени. Нахождение решения включает сложение вкладов всех возможных конфигураций определенных матриц на звеньях решетки или, по крайней мере, некоторой большой репрезентативной выборки. (По сути, это интеграл по путям Фейнмана.) Проблема, которая усложняется, состоит в том, что вычисление вклада даже одной конфигурации включает в себя умножение матриц вокруг каждого маленького контура в решетке, и количество контуров растет как четвертая степень числа размер решетки.Поскольку все эти умножения могут выполняться одновременно, есть много возможностей, чтобы все 64000 процессоров были заняты.

Чтобы выяснить, насколько хорошо это будет работать на практике, Фейнману пришлось написать компьютерную программу для КХД. Поскольку единственный компьютерный язык, с которым Ричард был действительно знаком, был Basic, он создал параллельную версию Basic, на которой он написал программу, а затем моделировал ее вручную, чтобы оценить, насколько быстро она будет работать на Connection Machine.

Он был в восторге от результатов. «Эй, Дэнни, ты не поверишь в это, но эта твоя машина действительно может сделать кое-что [полезное]!» Согласно расчетам Фейнмана, машина соединений, даже без какого-либо специального оборудования для арифметики с плавающей запятой, превзойдет машину, которую CalTech создавала для выполнения вычислений КХД. С этого момента Ричард все больше и больше подталкивал нас к рассмотрению численных приложений машины.

К концу того лета 1983 года Ричард завершил свой анализ поведения маршрутизатора и, к нашему большому удивлению и удивлению, представил свой ответ в форме набора дифференциальных уравнений в частных производных. Для физика это может показаться естественным, но для разработчика компьютеров рассматривать набор логических схем как непрерывную дифференцируемую систему немного странно. Уравнения маршрутизатора Фейнмана были в терминах переменных, представляющих непрерывные величины, такие как «среднее число 1 бит в адресе сообщения.«Я гораздо больше привык рассматривать анализ с точки зрения индуктивного доказательства и анализа случая, чем брать производную от« числа единиц »по времени. Наш дискретный анализ показал, что нам нужно семь буферов на чип; уравнения Фейнмана предполагают, что мы только нужно было пять. Мы решили перестраховаться и проигнорировать Фейнмана.

Решение проигнорировать анализ Фейнмана было принято в сентябре, но к весне следующего года мы уперлись в стену. Чипы, которые мы разработали, были немного велики для производства, и единственный способ решить проблему — сократить количество буферов на чип до пяти.Поскольку уравнения Фейнмана утверждали, что мы можем делать это безопасно, его нетрадиционные методы анализа стали казаться нам все лучше и лучше. Мы решили пойти дальше и сделать чипы с меньшим количеством буферов.

К счастью, он был прав. Когда мы сложили чипсы, машина заработала. Первой программой, запущенной на машине в апреле 1985 года, была игра Конвея «Жизнь».

Клеточные автоматы

Игра в жизнь — это пример класса вычислений, интересовавший Фейнмана, который называется [клеточные автоматы].Подобно многим физикам, которые всю свою жизнь исследовали все более и более низкие уровни детализации атома, Фейнман часто задавался вопросом, что же находится на дне. Одним из возможных ответов был клеточный автомат. Идея состоит в том, что «континуум» на своих самых низких уровнях может быть дискретным как в пространстве, так и во времени, и что законы физики могут быть просто макро-следствием среднего поведения крошечных клеток. Каждая ячейка может быть простым автоматом, который подчиняется небольшому набору правил и взаимодействует только со своими ближайшими соседями, как расчет решетки для КХД.Если бы Вселенная действительно работала таким образом, то это, вероятно, имело бы проверяемые последствия, такие как верхний предел плотности информации на кубический метр пространства.

Идея клеточных автоматов восходит к фон Нейману и Уламу, которых Фейнман знал в Лос-Аламосе. Недавний интерес Ричарда к этому предмету был вызван его друзьями Эд Фредкин и Стивен Вольфрам, оба из которых были очарованы моделями физики клеточных автоматов.Фейнман всегда быстро указывал им, что он считает их конкретные модели «странными», но, как и машину связи, он считал предмет достаточно сумасшедшим, чтобы вложить в него немного энергии.

Есть много потенциальных проблем с клеточными автоматами как моделью физического пространства и времени; например, нахождение набора правил, подчиняющихся специальной теории относительности. Одна из самых простых задач — просто сделать так, чтобы физика выглядела одинаково во всех направлениях.Наиболее очевидный образец клеточных автоматов, такой как фиксированная трехмерная сетка, имеет предпочтительные направления вдоль осей сетки. Можно ли реализовать даже ньютоновскую физику на фиксированной решетке автоматов?

У Фейнмана было предложенное решение проблемы анизотропии, которое он попытался (безуспешно) проработать подробно. Его идея заключалась в том, что лежащие в основе автоматы, вместо того, чтобы быть соединенными в регулярную решетку, такую ​​как сетка или узор из шестиугольников, могли быть связаны случайным образом.Волны, распространяющиеся через эту среду, в среднем будут распространяться с одинаковой скоростью во всех направлениях.

Клеточные автоматы начали привлекать внимание Thinking Machines, когда Стивен Вольфрам, который также проводил время в компании, предложил использовать такие автоматы не как модель физики, а как практический метод моделирования физических систем. В частности, мы могли бы использовать один процессор для моделирования каждой ячейки и правил, выбранных для моделирования чего-то полезного, например гидродинамики.Для двумерных задач было изящное решение проблемы анизотропии, поскольку [Фриш, Хасслахер, Помо] показали, что гексагональная решетка с простым набором правил приводит к изотропному поведению на макроуровне. Вольфрам использовал этот метод на Connection Machine, чтобы создать красивый фильм о турбулентном потоке жидкости в двух измерениях. Просмотр фильма взволновал всех нас, особенно Фейнмана, физическим моделированием. Мы все начали планировать дополнения к оборудованию, такие как поддержка арифметики с плавающей запятой, которая позволила бы нам выполнять и отображать различные симуляции в реальном времени.

Объяснитель Фейнмана

Между тем у нас были большие проблемы с объяснением людям, что мы делаем с клеточными автоматами. Когда мы заговорили о диаграммах переходов между состояниями и конечных автоматах, глаза потускнели. Наконец Фейнман сказал нам объяснить это так:

«Мы заметили в природе, что поведение жидкости очень мало зависит от природы отдельных частиц в этой жидкости.Например, поток песка очень похож на поток воды или поток стопки шарикоподшипников. Поэтому мы воспользовались этим фактом, чтобы изобрести тип воображаемой частицы, которую нам особенно просто моделировать. Эта частица представляет собой идеальный шарикоподшипник, который может двигаться с одной скоростью в одном из шести направлений. Поток этих частиц в достаточно большом масштабе очень похож на поток природных флюидов ».

Это было типичное объяснение Ричарда Фейнмана.С одной стороны, это приводило в ярость экспертов, которые работали над проблемой, потому что в нем даже не упоминались все умные проблемы, которые они решили. С другой стороны, слушатели обрадовались, поскольку они могли уйти от этого с реальным пониманием явления и того, как оно связано с физической реальностью.

Мы попытались воспользоваться талантом Ричарда к ясности, заставив его критиковать технические презентации, которые мы сделали при представлении наших продуктов.Перед коммерческим анонсом Connection Machine CM-1 и всех наших будущих продуктов Ричард критиковал запланированную презентацию предложение за предложением. «Не говори« отраженная акустическая волна ». Скажите [эхо] «. Или: «Забудьте все эти« локальные минимумы ». Просто скажите, что в кристалле застрял пузырь, и вы должны его вытряхнуть». Ничто не злило его сильнее, чем простая сложная речь.

Заставить Ричарда дать такой совет иногда было непросто.Он делал вид, что ему не нравится работать над проблемами, выходящими за рамки заявленной им области знаний. Часто в «Думающих машинах», когда его просили совета, он грубо отказывался со словами: «Это не мой отдел». Я никогда не мог понять, что это за отдел, но в любом случае это не имело значения, поскольку большую часть времени он проводил, работая над проблемами «не для моего отдела». Иногда он действительно сдавался, но чаще он возвращался через несколько дней после своего отказа и замечания: «Я думал о том, о чем вы спросили на днях, и мне это кажется… «Это сработало бы лучше всего, если бы вы не ожидали этого.

Я не имею в виду, что Ричард не решался делать «грязную работу». Фактически, он всегда был волонтером для этого. Многие посетители «Мыслительных машин» были шокированы, увидев, что у нас есть нобелевский лауреат, который паяет печатные платы или красит стены. Но то, что Ричард ненавидел или, по крайней мере, делал вид, что ненавидит, просили дать совет. Так почему же люди всегда просили его об этом? Потому что даже когда Ричард не понимал, он всегда понимал лучше, чем все мы.И что бы он ни понимал, он мог дать понять и другим. Ричард заставил людей почувствовать себя детьми, когда взрослые относятся к нему как к взрослому. Он никогда не боялся говорить правду, и каким бы глупым ни был ваш вопрос, он никогда не заставлял вас чувствовать себя дураком.

Очаровательная сторона Ричарда помогла людям простить его за его некрасивые качества. Например, Ричард во многом был сексистом. Когда приходило время для его ежедневной тарелки супа, он оглядывался в поисках ближайшей «девушки» и спрашивал, принесет ли она ему его.Не имело значения, была ли она поваром, инженером или президентом компании. Однажды я спросил женщину-инженера, которая только что стала жертвой этого, беспокоит ли ее это. «Да, это меня действительно раздражает», — сказала она. «С другой стороны, он единственный, кто когда-либо объяснял мне квантовую механику, как если бы я мог ее понять». В этом была суть очарования Ричарда.

Вид игры

Ричард работал в компании время от времени в течение следующих пяти лет.В конечном итоге к машине было добавлено оборудование с плавающей запятой, и по мере того, как машина и ее преемники начали коммерческое производство, они все больше и больше использовались для решения задач численного моделирования, которые Ричард впервые применил в своей программе QCD. Интерес Ричарда сместился с конструкции машины на ее применение. Как оказалось, создание большого компьютера — хороший повод поговорить с людьми, которые работают над одними из самых интересных проблем науки.Мы начали работать с физиками, астрономами, геологами, биологами, химиками — каждый из них пытался решить какую-то проблему, которую раньше было невозможно решить. Чтобы понять, как выполнять эти вычисления на параллельной машине, требуется понимание деталей приложения, что Ричард любил делать.

Для Ричарда решение этих проблем было чем-то вроде игры. Он всегда начинал с самых простых вопросов вроде: «Какой самый простой пример?». или «Как узнать, правильный ли ответ?» Он задавал вопросы, пока не свел проблему к какой-то важной головоломке, которую, как он думал, он сможет решить.Затем он брался за работу, что-то писал на блокноте и смотрел на результаты. Пока он решал эту головоломку, его было невозможно прервать. «Не приставай ко мне. Я занят», — говорил он, даже не поднимая глаз. В конце концов он либо решит, что проблема слишком сложна (в этом случае он потеряет интерес), либо найдет решение (в этом случае он потратит следующие день или два, объясняя ее всем, кто слушает). Таким образом он работал над проблемами поиска в базах данных, геофизического моделирования, сворачивания белков, анализа изображений и чтения страховых форм.

Последний проект, над которым я работал с Ричардом, относился к моделированной эволюции. Я написал программу, которая моделировала эволюцию популяций воспроизводящих половым путем существ на протяжении сотен тысяч поколений. Результаты были неожиданными, поскольку физическая форма населения резко увеличивалась, а не благодаря ожидаемому устойчивому улучшению. Летопись окаменелостей показывает некоторые свидетельства того, что реальная биологическая эволюция может также демонстрировать такое «прерывистое равновесие», поэтому Ричард и я решили более внимательно изучить, почему это произошло.К тому времени он чувствовал себя плохо, поэтому я пошел и провел с ним неделю в Пасадене, и мы разработали модель эволюции конечных популяций, основанную на уравнениях Фоккера-Планка. Вернувшись в Бостон, я пошел в библиотеку и обнаружил книгу Кимуры на эту тему, и, к моему большому разочарованию, все наши «открытия» были изложены на первых нескольких страницах. Когда я перезвонил и рассказал Ричарду о том, что я нашел, он был в восторге. «Эй, мы все правильно поняли!» он сказал.«Неплохо для любителей».

Оглядываясь назад, я понимаю, что почти во всем, над чем мы работали вместе, мы оба были любителями. В цифровой физике, нейронных сетях и даже в параллельных вычислениях мы никогда не знали, что делаем. Но то, что мы изучали, было настолько новым, что никто другой точно не знал, что они делали. Только любители добились прогресса.

Говорить хорошие вещи, которые вы знаете

На самом деле, я сомневаюсь, что Ричарда больше всего интересовал «прогресс».Он всегда искал закономерности, связи, новый взгляд на что-то, но я подозреваю, что его мотивация заключалась не столько в понимании мира, сколько в поиске новых идей для объяснения. Акт открытия не был для него завершен, пока он не научил этому кого-то другого.

Я помню разговор, который у нас был примерно за год до его смерти, когда мы гуляли по холмам над Пасаденой. Мы исследовали незнакомую тропу, и Ричард, выздоравливающий после тяжелой операции по поводу рака, шел медленнее, чем обычно.Он рассказывал длинную и забавную историю о том, как он читал о своей болезни и удивлял своих врачей, предсказывая их диагноз и свои шансы на выживание. Я впервые слышал, как далеко зашел его рак, поэтому шутки не казались такими уж смешными. Он, должно быть, заметил мое настроение, потому что внезапно остановил рассказ и спросил: «Эй, в чем дело?»

Я заколебался. «Мне грустно, потому что ты умрешь».

«Ага, — вздохнул он, — меня это тоже иногда беспокоит.Но не так много, как вы думаете ». И после еще нескольких шагов:« Когда ты станешь таким же старым, как я, ты начнешь понимать, что ты все равно рассказал другим людям все то хорошее, что знаешь ».

Несколько минут мы шли молча. Затем мы подошли к месту, где пересекалась еще одна тропа, и Ричард остановился, чтобы осмотреть окрестности. Внезапно его лицо озарила ухмылка. «Эй, — сказал он, забыв все следы печали, — держу пари, я могу показать тебе лучший путь домой.«

Так он и сделал.

Посетите главную страницу или подпишитесь на наш блог

Сетевая динамика и физиология клетки

  • 1

    Осгуторп, Д. Дж. Ab initio сворачивание белка. Curr. Opin. Struct. Биол. 10 , 146–152 (2000).

    CAS Статья PubMed Google ученый

  • 2

    Бейкер Д. и Сали А. Прогнозирование структуры белка и структурная геномика. Science 294 , 93–96 (2001).

    CAS Статья PubMed Google ученый

  • 3

    Kollman, P.A. et al. Расчет структур и свободных энергий сложных молекул: сочетание молекулярной механики и моделей континуума. В соотв. Chem. Res. 33 , 889–897 (2000).

    CAS Статья PubMed Google ученый

  • 4

    Ван, В., Донини, О., Рейес, К. М. и Коллман, П. А. Биомолекулярное моделирование: последние разработки в силовых полях, моделирование ферментативного катализа, нековалентных взаимодействий белок-лиганд, белок-белок и белок-нуклеиновая кислота. Annu. Rev. Biophys. Biomol. Struct. 30 , 211–243 (2001).

    CAS Статья PubMed Google ученый

  • 5

    Ху, Х., Ритц, Т., Дамьянович, А. и Шультен, К. Пигментная организация и передача электронного возбуждения в фотосинтетической единице пурпурных бактерий. J. Phys. Chem. B 101 , 3854–3871 (1997).

    CAS Статья Google ученый

  • 6

    Элстон Т., Ван Х. и Остер Г. Трансдукция энергии в АТФ-синтазе. Nature 391 , 510–513 (1998).

    CAS Статья PubMed Google ученый

  • 7

    Chung, S.-H., Allen, T. W., Hoyles, M. & Kuyucak, S.Проникновение ионов через калиевый канал: исследования броуновской динамики. Biophys. J. 77 , 2517–2533 (1999).

    CAS Статья PubMed PubMed Central Google ученый

  • 8

    Брей Д. Белковые молекулы как вычислительные элементы в живых клетках. Nature 376 , 307–312 (1995). В этой статье представлен случай белковых сетей как единиц обработки информации в клетке.

    CAS Статья PubMed Google ученый

  • 9

    Weinberg, R.A. Белок ретинобластомы и контроль клеточного цикла. Cell 81 , 323–330 (1995).

    CAS Статья PubMed Google ученый

  • 10

    Планас-Силва, М. Д. и Вайнберг, Р. А. Точка ограничения и контроль пролиферации клеток. Curr. Opin.Cell Biol. 9 , 768–772 (1997).

    CAS Статья PubMed Google ученый

  • 11

    Ханахан Д. и Вайнберг Р. А. Признаки рака. Cell 100 , 57–70 (2000).

    CAS Статья PubMed Google ученый

  • 12

    Кон, К. В. Карта молекулярного взаимодействия систем контроля клеточного цикла и репарации ДНК млекопитающих. Мол. Биол. Ячейка , , 10, , 2703–2734 (1999).

    CAS Статья PubMed PubMed Central Google ученый

  • 13

    Хэсти, Дж., МакМиллен, Д., Айзекс, Ф. и Коллинз, Дж. Дж. Вычислительные исследования регуляторных сетей генов: в номере молекулярной биологии. Nature Rev. Genet. 2 , 268–279 (2001). Превосходный всесторонний обзор моделирования генетических регуляторных систем.

    CAS Статья PubMed Google ученый

  • 14

    Мейнхардт, Х. Иерархическая индукция клеточных состояний: модель сегментации у Drosophila . J. Cell Sci. (Дополнение) 4 , 357–381 (1986).

    CAS Статья Google ученый

  • 15

    Рейниц, Дж., Мьолснесс, Э. и Шарп, Д. Х. Модель для совместного управления позиционной информацией у Drosophila бикоидом и материнским горбунем. J. Exp. Zool. 271 , 47–56 (1995).

    CAS Статья PubMed Google ученый

  • 16

    Макадамс, Х. Х. и Шапиро, Л. Схемное моделирование генетических сетей. Science 269 , 650–656 (1995).

    CAS Статья PubMed Google ученый

  • 17

    Фон Дассов, Г., Меир, Э., Манро, Э. М. и Оделл, Г.M. Сеть с полярностью сегментов — это надежный развивающий модуль. Nature 406 , 188–192 (2000).

    CAS Статья PubMed Google ученый

  • 18

    Санчес, Л. и Тифри, Д. Логический анализ генной системы гена Drosophila . J. Theor. Биол. 211 , 115–141 (2001).

    CAS Статья PubMed Google ученый

  • 19

    Тайсон, Дж.Дж. И Мюррей, Дж. Д. Циклические волны АМФ во время агрегации амеб Dictyostelium . Развитие 106 , 421–426 (1989).

    CAS PubMed Google ученый

  • 20

    Дюпон, Г. и Голдбетер, А. Колебания и волны цитозольного кальция: выводы из теоретических моделей. BioEssays 14 , 485–493 (1992).

    CAS Статья PubMed Google ученый

  • 21

    Герхардт, М., Шустер, Х. и Тайсон, Дж. Дж. Модель клеточного автомата возбудимых сред. Наука 247 , 1563–1566 (1990).

    CAS Статья PubMed Google ученый

  • 22

    Маркус, М. и Хесс, Б. Изотропный клеточный автомат для моделирования возбудимых сред. Nature 347 , 56–58 (1990).

    CAS Статья Google ученый

  • 23

    Смолен, п., Бакстер, Д. А. и Бирн, Дж. Х. Моделирование циркадных колебаний с помощью взаимосвязанных контуров положительной и отрицательной обратной связи. J. Neurosci. 21 , 6644–6656 (2001).

    CAS Статья PubMed Google ученый

  • 24

    Lema, M. A., Golombek, D. A. & Echave, J. Модель задержки циркадного водителя ритма. J. Theor. Биол. 204 , 565–574 (2000).

    CAS Статья PubMed Google ученый

  • 25

    Макки, М.C. в Примеры математического моделирования (ред. Отмер, Х. Г., Адлер, Ф. Р., Льюис, М. А. и Даллон, Дж. К.) 149–178 (Прентис Холл, Нью-Джерси, 1997).

    Google ученый

  • 26

    Уилсон, Х. Р. и Коуэн, Дж. Д. Математическая теория функциональной динамики корковой и таламической нервной ткани. Kybernetik 13 , 55–80 (1973).

    CAS Статья PubMed Google ученый

  • 27

    Эрментраут, Г.Б. и Коуэн, Дж. Д. Математическая теория паттернов зрительных галлюцинаций. Biol. Кибернет. 34 , 137–150 (1979).

    CAS Статья Google ученый

  • 28

    Аркин А., Росс Дж. И МакАдамс Х. Х. Стохастический кинетический анализ бифуркации пути развития в инфицированных фагом λ клетках Escherichia coli . Генетика 149 , 1633–1648 (1998).

    CAS PubMed PubMed Central Google ученый

  • 29

    Макадамс, Х.Х. и Аркин А. Это шумный бизнес. Trends Genet. 15 , 65–69 (1999).

    CAS Статья PubMed PubMed Central Google ученый

  • 30

    Jacquez, J. A. Компартментный анализ в биологии и медицине (Elsevier Science, Амстердам, 1972).

    Google ученый

  • 31

    Тайсон, Дж. Дж., Новак, Б., Оделл, Г. М., Чен, К.И Трон, К. Д. Теория химической кинетики как инструмент для понимания регуляции фактора, стимулирующего М-фазу в клеточном цикле. Trends Biochem. Sci. 21 , 89–96 (1996).

    CAS Статья PubMed Google ученый

  • 32

    Тайсон, Дж. Дж. И Новак, Б. Регулирование цикла эукариотических клеток: молекулярный антагонизм, гистерезис и необратимые переходы. J. Theor. Биол. 210 , 249–263 (2001).

    CAS Статья PubMed Google ученый

  • 33

    Каплан Д. и Гласс Л. Понимание нелинейной динамики (Спрингер, Нью-Йорк, 1995).

    Забронировать Google ученый

  • 34

    Строгац С. Х. Нелинейная динамика и хаос (Addison-Wesley Co., Рединг, Массачусетс, 1994).

    Google ученый

  • 35

    Тайсон, Дж.J., Novak, B., Chen, KC & Val, J. в Progress in Cell Cycle Research (eds Meijer, L., Guidet, S. & Tung, HYL) 1–8 (Plenum, New York, 1995). ).

    Забронировать Google ученый

  • 36

    Трон, К. Д. Бистабильное биохимическое переключение и контроль событий клеточного цикла. Онкоген 15 , 317–325 (1997).

    CAS Статья PubMed Google ученый

  • 37

    Новак, Б.& Тайсон, Дж. Дж. Количественный анализ молекулярной модели митотического контроля у делящихся дрожжей. J. Theor. Биол. 173 , 283–305 (1995).

    CAS Статья Google ученый

  • 38

    Фантес, П. А. Контроль размера клеток и времени цикла в Schizosaccharomyces pombe . J. Cell Sci. 24 , 51–67 (1977).

    CAS PubMed Google ученый

  • 39

    Рассел П.& Nurse, P. cdc25 + действует как индуктор в митотическом контроле делящихся дрожжей. Cell 45 , 145–153 (1986).

    CAS Статья PubMed Google ученый

  • 40

    Russell, P. & Nurse, P. Отрицательная регуляция митоза с помощью wee1 + , гена, кодирующего гомолог протеинкиназы. Cell 49 , 559–567 (1987).

    CAS Статья PubMed Google ученый

  • 41

    Медсестра, П.Универсальный механизм управления, регулирующий наступление фазы М. Nature 344 , 503–508 (1990).

    CAS Статья PubMed Google ученый

  • 42

    Goldbeter, A. Модель минимального каскада для митотического осциллятора, включающего циклин и киназу cdc2. Proc. Natl Acad. Sci. США 88 , 9107–9111 (1991).

    CAS Статья PubMed Google ученый

  • 43

    Штерн, Б.И Медсестра П. Количественная модель контроля cdc2 S-фазы и митоза у делящихся дрожжей. Trends Genet. 12 , 345–350 (1996).

    CAS Статья PubMed Google ученый

  • 44

    Fantes, P. & Nurse, P. Контроль размера клеток при делении у делящихся дрожжей с помощью контроля размера с модулированным ростом при делении ядра. Exp. Cell Res. 107 , 377–386 (1977).

    CAS Статья PubMed Google ученый

  • 45

    Свейцер, А., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. J. и Novak, B. Моделирование клеточного цикла делящихся дрожжей: квантованное время цикла в wee1 cdc25Δ мутантных клетках. Proc. Natl Acad. Sci. США 97 , 7865–7870 (2000).

    CAS Статья PubMed Google ученый

  • 46

    Медсестра П. Генетический контроль размера клеток при делении клеток у дрожжей. Nature 256 , 547–551 (1975).

    CAS Статья PubMed Google ученый

  • 47

    Moreno, S. & Nurse, P. Регуляция прохождения через фазу G1 клеточного цикла с помощью гена rum1 + . Nature 367 , 236–242 (1994).

    CAS Статья PubMed Google ученый

  • 48

    Новак Б. и Тайсон Дж. Дж. Моделирование контроля репликации ДНК у делящихся дрожжей. Proc. Natl Acad. Sci. USA 94 , 9147–9152 (1997).

    CAS Статья PubMed Google ученый

  • 49

    Кросс, Ф. Р., Аршамбо, В., Миллер, М., Кловстад, М. Тестирование математической модели клеточного цикла дрожжей. Мол. Биол. Мобильный (в печати).

  • 50

    Хартвелл, Л. Х. и Вайнерт, Т. А. Контрольные точки: элементы управления, обеспечивающие порядок событий клеточного цикла. Science 246 , 629–634 (1989).

    CAS Статья PubMed Google ученый

  • 51

    Ринд Н. и Рассел П. Контрольные точки повреждения митотической ДНК и репликации у дрожжей. Curr. Opin. Cell Biol. 10 , 749–758 (1998).

    CAS Статья PubMed PubMed Central Google ученый

  • 52

    Фурнари, Б., Райнд, Н. и Рассел, П. Митотический индуктор Cdc25, на который нацелена киназа контрольной точки повреждения ДНК Chk1. Science 277 , 1495–1497 (1997).

    CAS Статья PubMed Google ученый

  • 53

    Ринд Н. и Рассел П. Роли митотических ингибиторов Wee1 и Mik1 в повреждениях ДНК G2 и контрольных точках репликации. Мол. Клетка. Биол. 21 , 1499–1508 (2001).

    CAS Статья PubMed PubMed Central Google ученый

  • 54

    Медсестра, П.& Thuriaux, P. Контролирует время репликации ДНК во время клеточного цикла делящихся дрожжей. Exp. Cell Res. 107 , 365–375 (1977).

    CAS Статья PubMed Google ученый

  • 55

    Сегель Л. А. Математические модели в молекулярной и клеточной биологии (Издательство Кембриджского университета, Кембридж, 1980).

    Google ученый

  • 56

    Гольдбетер, А. Биохимические колебания и клеточные ритмы (Cambridge Univ. Press, Cambridge, 1996).

    Забронировать Google ученый

  • 57

    Кинер Дж. И Снейд Дж. Математическая физиология (Спрингер, Нью-Йорк, 1998).

    Google ученый

  • 58

    Фолл, К. П., Марланд, Э., Вагнер, Дж. М. и Тайсон, Дж. Дж. Computational Cell Biology (Springer, New York, 2002).

    Google ученый

  • 59

    Фрейзер, С. Э. и Харланд, Р. М. Молекулярные метаморфозы экспериментальной эмбриологии. Cell 100 , 41–55 (2000).

    CAS Статья PubMed Google ученый

  • 60

    Медсестра П. Длинный двадцатый век клеточного цикла и за его пределами. Cell 100 , 71–78 (2000).

    CAS Статья PubMed Google ученый

  • 61

    Хартвелл, Л.Х., Хопфилд, Дж. Дж., Лейблер, С. и Мюррей, А. В. От молекулярной биологии к модульной клеточной биологии. Nature 402 , C47 – C52 (1999). В этой статье приводится аргумент в пользу модульности молекулярных регуляторных систем.

    CAS Статья PubMed Google ученый

  • 62

    Батлер Д. Вычислительная техника 2010: от черных дыр к биологии. Nature 402 , C67 – C70 (1999).

  • 63

    Новак, Б., Патаки, З., Силиберто, А. и Тайсон, Дж. Дж. Математическая модель цикла деления клеток делящихся дрожжей. Хаос 11 , 277–286 (2001).

    CAS Статья PubMed Google ученый

  • 64

    Benito, J., Martin-Castellanos, C. & Moreno, S. Регулирование фазы G1 клеточного цикла путем периодической стабилизации и деградации ингибитора p25rum1 CDK. EMBO J. 17 , 482–497 (1998).

    CAS Статья PubMed PubMed Central Google ученый

  • 65

    Бланко, М. А., Санчес-Диас, А., Де Прада, Дж. М. и Морено, С. APC (ste9 / srw1) способствует деградации митотических циклинов в G1 и ингибируется фосфорилированием cdc2. EMBO J. 19 , 3945–3955 (2000).

    CAS Статья PubMed PubMed Central Google ученый

  • 66

    Ямагути, С., Okayama, H. & Nurse, P. Делящиеся дрожжи Родственный Fizzy белок srw1p является G1-специфическим промотором митотической деградации циклина B. EMBO J. 19 , 3968–3977 (2000).

    CAS Статья PubMed PubMed Central Google ученый

  • 67

    Aligue, R., Wu, L. & Russell, P. Регулирование тирозинкиназы Schizosaccharomyces pombe Wee1. J. Biol. Chem. 272 , 13320–13325 (1997).

    CAS Статья PubMed Google ученый

  • 68

    Миллар, Дж. Б. А. и Рассел, П. Индуктор М-фазы cdc25: нетрадиционная протеинфосфатаза. Cell 68 , 407–410 (1992).

    CAS Статья PubMed Google ученый

  • 69

    Hyver, C. & Le Guyader, H. MPF и cyclin — моделирование минимального осциллятора клеточного цикла. Biosystems 24 , 85–90 (1990).

    CAS Статья PubMed Google ученый

  • 70

    Норел Р. и Агур З. Модель для корректировки митотических часов с помощью уровней циклина и MPF. Science 251 , 1076–1078 (1991).

    CAS Статья PubMed Google ученый

  • 71

    Тайсон, Дж. Дж. Моделирование цикла деления клетки: взаимодействия cdc2 и циклина. Proc. Natl Acad. Sci. США 88 , 7328–7332 (1991).

    CAS Статья PubMed Google ученый

  • 72

    Новак Б. и Тайсон Дж. Дж. Численный анализ комплексной модели контроля М-фазы в экстрактах ооцитов Xenopus и интактных эмбрионах. J. Cell Sci. 106 , 1153–1168 (1993). Первая комплексная модель регуляции клеточного цикла, тщательно сравниваемая с экспериментами с интактными эмбрионами лягушки и бесклеточными экстрактами яиц.

    CAS PubMed Google ученый

  • 73

    Марловиц, Г., Тайсон, К. Дж., Новак, Б. и Тайсон, Дж. Дж. Моделирование контроля М-фазы в экстрактах ооцитов Xenopus : механизм наблюдения за нереплицированной ДНК. Biophys. Chem. 72 , 169–184 (1998).

    CAS Статья PubMed Google ученый

  • 74

    Борисук, М.Т. и Тайсон, Дж. Дж. Бифуркационный анализ модели митотического контроля в яйцах лягушек. J. Theor. Биол. 195 , 69–85 (1998).

    CAS Статья PubMed Google ученый

  • 75

    Novak, B., Csikasz-Nagy, A., Gyorffy, B., Chen, K. & Tyson, JJ Математическая модель клеточного цикла делящихся дрожжей с контрольными точками контроля на G1 / S, G2 / M и переходы метафаза / анафаза. Biophys. Chem. 72 , 185–200 (1998).

    CAS Статья PubMed Google ученый

  • 76

    Chen, K. C. et al. Кинетический анализ молекулярной модели цикла почкующихся дрожжевых клеток. Мол. Биол. Ячейка , , 11, , 369–391 (2000).

    CAS Статья PubMed PubMed Central Google ученый

  • 77

    Обейесекере, М. Н., Герберт, Дж.Р. и Циммерман, С. О. Модель фазы G1 клеточного цикла, включающая комплекс cyclinE / cdk2 и белок ретинобластомы. Онкоген 11 , 1199–1205 (1995).

    CAS PubMed Google ученый

  • 78

    Hatzimanikatis, V., Lee, K. H. & Bailey, J. E. Математическое описание регуляции G1 – S перехода клеточного цикла млекопитающих. Biotechnol. Bioeng. 65 , 631–637 (1999).

    CAS Статья PubMed Google ученый

  • 79

    Агуда, Б. Д. и Танг, Ю. Кинетическое происхождение точки рестрикции в клеточном цикле млекопитающих. Cell Prolif. 32 , 321–335 (1999).

    CAS Статья PubMed Google ученый

  • 80

    Фелл Д. А. Понимание контроля метаболизма (Портленд, Лондон, 1996).

    Google ученый

  • 81

    Шиллинг, К. Х. и Палссон, Б. О. Оценка метаболических возможностей Haemophilus influenzae Rd с помощью анализа путей в масштабе генома. J. Theor. Биол. 203 , 249–283 (2000).

    CAS Статья PubMed PubMed Central Google ученый

  • 82

    Teusink, B. et al. Можно ли понять гликолиз дрожжей с точки зрения in vitro кинетики составляющих ферментов? Биохимия тестирования. Eur. J. Biochem. 267 , 5313–5329 (2000).

    CAS Статья PubMed Google ученый

  • 83

    Martiel, J. L. & Goldbeter, A. Модель, основанная на десенсибилизации рецептора для передачи сигналов циклического АМФ в клетках Dictyostelium . Biophys. J. 52 , 808–828 (1987).

    Артикул Google ученый

  • 84

    Де Янг, Г.W. & Keizer, J. Модель на основе инозитол-1,4,5-трифосфатного рецептора для стимулированных агонистами колебаний в концентрации Ca 2+ . Proc. Natl Acad. Sci. США 89 , 9895–9899 (1992).

    CAS Статья PubMed Google ученый

  • 85

    Mahaffy, J. & Zyskind, J. Модель инициации репликации в Escherichia coli . J. Theor. Биол. 140 , 453–477 (1989).

    CAS Статья PubMed Google ученый

  • 86

    Брей Д., Бурре Р. Б. и Саймон М. И. Компьютерное моделирование каскада фосфорилирования, контролирующего бактериальный хемотаксис. Мол. Биол. Ячейка , , 4, , 469–482 (1993). Определяющий тенденции анализ молекулярных механизмов, контролирующих движение бактерий. Компьютерное моделирование воспроизводит поведение более 30 мутантов, в которых компоненты сети удалены или сверхэкспрессированы.

    CAS Статья PubMed PubMed Central Google ученый

  • 87

    Meinhardt, H. & De Boer, P.A. Формирование паттерна в Escherichia coli : модель межполюсных колебаний белков MIN и локализации сайта деления. Proc. Natl Acad. Sci. USA (в печати).

  • 88

    Бертрам Р., Бьютт М. Дж., Киемель Т. и Шерман А. Топологическая и феноменологическая классификация взрывных колебаний. Бык. Математика. Биол. 57 , 413–439 (1995).

    CAS Статья PubMed Google ученый

  • 89

    Ижикевич Э.М. Синхронизация эллиптических барстеров. Soc. Ind. Appl. Математика. Ред. 43 , 315–344 (2001).

    Google ученый

  • 90

    Сегель, Л. А., Голдбетер, А., Девреотес, П. Н. и Нокс, Б. Е. Механизм точной сенсорной адаптации, основанный на модификации рецептора. J. Theor. Биол. 120 , 151–179 (1986).

    CAS Статья PubMed Google ученый

  • 91

    Баркай, Н. и Лейблер, С. Устойчивость в простых биохимических сетях. Nature 387 , 913–917 (1997).

    CAS Статья PubMed PubMed Central Google ученый

  • 92

    Пескин, К. С., Оделл, Г. М.& Остер, Г. Ф. Клеточные движения и тепловые флуктуации: броуновский храповик. Biophys. J. 65 , 316–324 (1993).

    CAS Статья PubMed PubMed Central Google ученый

  • 93

    Герон С. и Левит-Гуревич К. Трехмерная модель движения ресничек, основанная на внутренней структуре 9 + 2. Proc. R. Soc. Лондон. B 268 , 599–607 (2001).

    CAS Статья Google ученый

  • 94

    Энди Д., You, L., Yin, J. & Molineux, I. J. Расчет, прогноз и экспериментальные тесты пригодности для мутантов бактериофага T7 с пермутированными геномами. Proc. Natl Acad. Sci. США 97 , 5375–5380 (2000).

    CAS Статья PubMed Google ученый

  • 95

    Goldbeter, A. Модель циркадных колебаний в Drosophila периоде белка (PER). Proc. R. Soc. Лондон. B 261 , 319–324 (1995).

    CAS Статья Google ученый

  • 96

    Leloup, J. C. & Goldbeter, A. Модель циркадных ритмов у Drosophila , включающая образование комплекса между белками PER и TIM. J. Biol. Ритмы 13 , 70–87 (1998).

    CAS Статья PubMed Google ученый

  • 97

    Тайсон, Дж. Дж., Хонг, К.И., Трон, К. Д. и Новак, Б. Простая модель циркадных ритмов, основанная на димеризации и протеолизе PER и TIM. Biophys. J. 77 , 2411–2417 (1999).

    CAS Статья PubMed PubMed Central Google ученый

  • 98

    Шарп Д. Х. и Рейниц Дж. Прогнозирование паттернов мутантной экспрессии с использованием генных цепей. Biosystems 47 , 79–90 (1998).

    CAS Статья PubMed Google ученый

  • 99

    Savageau, M.А. Дизайн механизмов молекулярного контроля и потребность в экспрессии генов. Proc. Natl Acad. Sci. США 74 , 5647–5651 (1977). Раннее и превосходное приложение динамического мышления к физиологии бактериальных клеток.

    CAS Статья PubMed Google ученый

  • 100

    Келлер А. Д. Модельные генетические схемы, кодирующие факторы ауторегуляторной транскрипции. J. Theor. Биол. 172 , 169–185 (1995).

    CAS Статья PubMed Google ученый

  • 101

    Гарднер, Т. С., Кантор, К. Р. и Коллинз, Дж. Дж. Конструирование генетического тумблера в Escherichia coli . Nature 403 , 339–342 (2000). Генетическая сеть, искусственно созданная на основе бактерий, подтверждает предсказания математических моделей.

    CAS Статья PubMed Google ученый

  • 102

    Гудвин, Б.C. Модель увлечения для синхронизированного синтеза ферментов в бактериях. Nature 209 , 479–481 (1966).

    CAS Статья PubMed Google ученый

  • 103

    Блисс Р. Д., Пейнтер Р. П. и Марр А. Г. Роль подавления обратной связи в стабилизации классического оперона. J. Theor. Биол. 97 , 177–193 (1982).

    CAS Статья PubMed Google ученый

  • 104

    Эловиц, М.Б. и Лейблер С. Синтетическая осцилляторная сеть регуляторов транскрипции. Nature 403 , 335–338 (2000).

    CAS Статья PubMed Google ученый

  • 105

    Levchenko, A., Bruck, J. & Sternberg, P. W. Белки каркаса могут двухфазно влиять на уровни передачи сигналов митоген-активируемой протеинкиназы и снижать ее пороговые свойства. Proc. Natl Acad. Sci. USA 97 , 5818–5823 (2000).

    CAS Статья PubMed Google ученый

  • 106

    Феррелл, Дж. Э. Мл. И Ксионг, У. Бистабильность в передаче сигналов в клетках: как сделать непрерывные процессы прерывистыми, а обратимые процессы необратимыми. Хаос 11 , 227–236 (2001).

    CAS Статья PubMed Google ученый

  • 107

    Asthagiri, A. R. & Lauffenburger, D.A. Вычислительное исследование эффектов обратной связи на динамику сигнала в модели пути митоген-активируемой протеинкиназы (MAPK). Biotechnol. Прог. 17 , 227–239 (2001).

    CAS Статья PubMed Google ученый

  • 108

    Фуссенеггер, М., Бейли, Дж. Э. и Варнер, Дж. Математическая модель функции каспазы при апоптозе. Nature Biotechnol. 18 , 768–774 (2000).

    CAS Статья Google ученый

  • Устройство

    , принцип действия, назначение

    Большинству потребителей все равно, что перед ними: УЗО (выключатель дифференциального тока) или дифатомат (дифференциальный автомат).Но при разработке проектов электросетей частных домов или квартир этот вопрос имеет определенное значение.

    В целом проблемы, которые возникают у наших граждан с организацией защиты собственного жилья, с точки зрения электробезопасности, значительны. Но что говорить, если до сих пор во многих отдаленных районах такие вещи, как «жучки» в пробках, являются нормой?

    Недавно ко мне обратился один из друзей с вопросом, а что у меня в щите? УЗО или дифавтомат .Как их отличить. Поскольку проблема, по мнению специалистов, очень серьезная, предлагаем вам небольшую образовательную программу на эту тему, в том числе для электриков, особенно молодых.

    Эти знания позволят вам понять, что именно «живет» в вашем распределительном щите: УЗО или дифавтомат, зачем его туда ставить и насколько это поможет, или почему спасет в будущем?

    Опытный электрик, у которого за плечами не одно КЗ, может даже обидеть такими вопросами! Однако среди молодежи мало внимания уделяется теории, хотя потребители все время задают такие вопросы.А теперь я подскажу вам несколько вариантов.

    Отличие Узо от дифференциального автомата по функциональному назначению

    Если посмотреть на УЗО и дифавтомат, то по внешнему виду эти два устройства очень похожи друг на друга, но функции, которые они выполняют, разные. Напомним, какие функции выполняет УЗО и дифференциальный автомат.

    Устройство защитного отключения срабатывает, если в сети, к которой он подключен, появляется дифференциальный ток, ток утечки.При возникновении тока утечки человек может первым пострадать, если коснется поврежденного оборудования. Кроме того, при появлении в проводке тока утечки изоляция нагревается, что может вызвать возгорание или возгорание.

    Следовательно, УЗО устанавливают для защиты от поражения электрическим током, а также повреждения электропроводки в виде протечек, сопровождающихся возгоранием. Подробнее о том, как работает это устройство, смотрите в статье о принципе работы УЗО.

    Теперь посмотрим на дифференциальный автомат.Это уникальное устройство, совмещающее в себе и автоматический выключатель (более понятный широкой публике как «автомат»), ранее считавшийся УЗО. Те. Дифференциальный автомат способен защитить вашу проводку как от коротких замыканий и перегрузок, так и от возникновения утечек, связанных с ранее описанными ситуациями.

    Теперь главный момент, по которому все путаются: помните, что, в отличие от дифавтомата, УЗО не защищает сеть от перегрузки и короткого замыкания.А большинство потребителей думают, что, установив УЗО, они защищены от всего!

    Проще говоря, УЗО — это просто индикатор, который контролирует утечку, и ток не проходит мимо ваших основных потребителей: электроприборов, лампочек и т. Д. Если где-то в сети повреждена изоляция и появляется ток утечки, УЗО реагирует на это и отключает сеть.

    Если одновременно включить все электроприборы (обогреватели, фены, утюги), то есть намеренно создать перегрузку, УЗО не сработает.И проводку, если нет других устройств защиты, обязательно сгорите вместе с УЗО. Если при включенном УЗО фаза подключена к нулю и получена большая неисправность, то УЗО также не будет работать.

    Почему я имею в виду все это, просто хочу обратить ваше внимание на то, что поскольку УЗО не защищает сеть от перегрузок и коротких замыканий, то вы, наверное, согласитесь со мной, что вам нужно защищать его самостоятельно. Именно поэтому УЗО всегда включается последовательно с автоматом.Эти два устройства работают, так сказать, в паре: одно защищает от протечек, другое — от перегрузок и короткого замыкания.

    Применив дифавтомат вместо УЗО, вы избавитесь от описанных выше ситуаций: он от всего защитит.

    Подведем черту, главное отличие УЗО от дифавтомата в том, что УЗО не защищает сеть от перегрузок и коротких замыканий.

    Визуальная разница между Узо и дифифтоматом

    На самом деле существует масса внешних особенностей, позволяющих легко отличить УЖД от дифавтомата.Посмотрите на картинку. Визуально эти два устройства очень похожи: похожий корпус, переключатель, кнопка «тест», какая-то схема на корпусе, непонятные буквы.

    Но если быть более въедливым, то вы заметите: схемы другие, тумблеры другие, буквы не повторяются. В каком из этих устройств есть УЗО, а в каком дифавтомат?

    Выше мы рассмотрели функциональные отличия этих устройств, теперь рассмотрим , в чем разница между УЗО и дифактоматом визуально — так сказать различия заметны невооруженным глазом.

    1. Маркировка по номинальному току

    Один из способов визуализации Отличия УЗО от диафтомата Это текущая маркировка. На любом устройстве указаны его технические характеристики. Для устройств, которые мы считаем основными характеристиками, являются номинальный рабочий ток и номинальный ток утечки.

    Если на корпусе прибора большими буквами написана только цифра (номинальный ток), то это УЗО. На нашем фото это устройство марки ВД1-63.

    Цифра 16 обозначена на его корпусе.Это означает, что устройство рассчитано на номинальный ток 16 (А). Если в начале надписи латинские буквы B, C или D, а затем идет цифра, то перед вами дифференциальный автомат. Например, в дифавтомате AVDT32 перед значением номинального тока стоит буква «С», которая указывает на тип характеристики электромагнитных и тепловых расцепителей .

    Еще раз внимательно прочтите и запомните. Если написано «16A», это УЗО, номинальный ток которого не должен превышать 16 ампер.Если пишется «C16», это диффузор, где буква «C» — характеристика расцепителей, «встроенных» в устройство, рассчитанных на номинальный ток 16А.

    2. Схема электрическая, изображенная на приборе

    На корпус любого исполнительного или защитного устройства производитель всегда наносит принципиальную схему. Они действительно похожи на УЗО и дифференциальный автомат.


    Мы не будем сейчас перечислять все, что там изображено (это тема отдельной статьи), а лишь выделим основные отличия.На схеме УЗО представляет собой овал, который обозначает дифференциальный трансформатор — сердце устройства, реагирующее на токи утечки и электромеханическое реле, замыкающее и размыкающее цепь, силовые контакты для подключения проводов и т. Д.

    На схеме дифавтомата, кроме всех подобных элементов, отличительными обозначениями являются тепловые и электромагнитные расцепители, реагирующие на ток перегрузки и короткого замыкания.


    Таким образом, глядя на схему подключения, которая изображена на корпусе, вы теперь знаете, чем они отличаются.Если на схеме показан тепловой и электромагнитный расцепитель, это дифференциальный автомат. Это схематическое отличие УЗО от дифавтомата .

    3. Наименование на корпусе прибора

    Если вам, как простому потребителю, сложно вспомнить, в чем разница между УЗО и дифактоматом , сообщаем: Зная о проблеме, которой посвящена статья, многие производители, чтобы покупатели не запутайтесь, специально напишите на корпусе название устройства.


    На боковой поверхности корпуса УЗО написано — переключатель дифференциальный. Это написано на боковой поверхности корпуса дифактомта — выключателя дифференциального тока. Хотя такие надписи наносятся не на все товары, как правило, на российских производителях и на всех иностранных товарах я такой маркировки не встречал.

    4. Сокращенная надпись на приборе

    В основном вопрос как отличить УЗО задается для продукции иностранного производства.Если речь идет об отечественных товарах, то вопросов вообще нет.

    На таких устройствах, как правило, русским языком написано, что это УЗО или дифференциальный автомат АВДТ.


    Напомню, что устройство защитного отключения (УЗО) теперь правильно называется дифференциальными выключателями (ВД). Дифференциальный автомат — это выключатель дифференциального тока (АВДТ).

    Подводя итоги как отличить узо от дифавтомата

    По ценовым параметрам УЗО и дифавтоматы различаются.Особенно это касается импортной продукции. Обычный дифавтомат немного дешевле УЗО в комплекте с обычным автоматом.

    Качество импортных устройств выше. Отечественные тоже неплохи, но проигрывают по таким важным характеристикам, как время отклика, уступают по надежности механических деталей, элементарно уступают по качеству корпусов.

    По надежности работы эти два устройства не уступают друг другу.

    Так как дифавтомат — устройство комбинированное, то из недостатков работы отмечу, что при его срабатывании сложно определить, что вызвало отключение: перегрузка, короткое замыкание или ток утечки.Правда, устройство развивается: некоторые дифавоматы снабжены индикаторами срабатывания дифференциального тока.

    Положительным моментом AVDT является простота установки: для электрика важно выкрутить пару небольших саморезов в тесной монтажной коробке. С другой стороны, это увеличивает надежность схемы: чем меньше размеры соединений, тем лучше. Но если устройство сломалось, его необходимо заменить.

    В случае использования УЗО в паре с автоматом процесс ремонта выглядит дешевле: меняется тот или иной элемент.Это следует учитывать при проектировании своих сетей, учитывая риск тех или иных негативных событий и их возможную частоту.

    Если коснуться простых схем плоской проводки, не имеет значения AVDT, который вы выберете, или RCD + автоматический . Если говорить о большом частном доме, то нужно посмотреть, какие линии посадить на дифавтомате (например, котельную или хозблок: там больше разных нагрузок, а значит и рисков), а какие — для пара УЗО + автомат (линии освещения, группы розеток).

    Вариантов реализации схем с этими устройствами можно придумать много, главное, чтобы вы понимали и запоминали, зачем вы это делаете.

    Аналогичных материалов на сайте:

    Электрика для дома — довольно сложная и разнообразная тема, и желательно знать основные детали каждого домовладельца, поскольку от этого зависят не только денежные затраты, но и безопасность вашего дома. В этой статье мы постараемся разобраться, что лучше — дифавтомат или УЗО.

    Введение в тему, или что такое дифавтомат?

    Чтобы разобраться с этой проблемой, сначала попробуйте определить основные понятия. Итак, дифавтомат.

    Устройство под названием успешно сочетает в себе функции как УЗО, так и обычного, которое защищает человека в случае контакта с оголенными участками токопроводящей части провода или теми частями электрических сетей, которые находятся под напряжением из-за повреждения проводка или другие подобные факторы. На сегодняшний день существует огромное количество таких устройств, которые рассчитаны на разные рабочие токи, и на разные токи утечки.

    Его главной отличительной особенностью является то, что он состоит из двух хорошо разделенных функциональных частей: автоматического выключателя (двух- или четырехполюсного), а также модуля защиты от поражения электрическим током. Установка дифавтомата должна производиться исключительно на DIN-рейку, и такая конструкция занимает гораздо меньше места, чем комбинация УЗО и автоматического выключателя.

    Учитывая время набора скорости, составляющее всего 0,04 секунды, дифференциальные автоматы обеспечивают наиболее адекватную защиту от поражения человека электричеством практически в любых условиях эксплуатации.Немаловажно и то, что дифференциальный автомат качественно защищает устройства в сети от перегрузок, неизбежно возникающих при различных типах аварийных ситуаций. И далее. Его конструкция обеспечивает максимально быстрое отключение электроэнергии в условиях, когда в любой части сети наблюдаются скачки напряжения более 250 В.

    Учитывая незавидные характеристики бытовых электрических сетей, а также степень их износа, последняя характеристика особенно важна.

    Основные преимущества дифавтомата

    Очень высокая скорость отклика.
    . Защита оборудования от скачков напряжения и рабочих перегрузок.
    . Возможность эксплуатации в условиях от -25 до +50 градусов Цельсия.
    . Огромный порог по износостойкости.

    Что такое УЗО?


    Невозможно игнорировать второго «оппонента» в споре на тему «дифавтомат или УЗО». Что такое УЗО?

    Это сокращение означает «защитные устройства выключены».Отключение осуществляется при обнаружении токов утечки. Проще говоря, сколько тока пришло к устройству по одному проводу, столько же должно пройти по другой части проводки. Если ток начинает уходить на землю или через заземляющий провод, защита мгновенно срабатывает, немедленно отключая сеть от источника питания.

    Такую систему необходимо (!) Размещать на розеточных группах, а также на бойлерах, стиральных машинах и электроплитах. Такие устройства не защищают (!) Ваше оборудование и проводку от системных перегрузок или коротких замыканий.

    Последнее обстоятельство очень часто не учитывается псевдоэлектриками, которые в угоду более дешевым схемам часто используют именно УЗО. Кроме того, есть корыстный интерес, когда он выдается на дифференциальный автомат, стоимость которого выше.

    Основная информация об устройстве

    Каков принцип работы УЗО? Его работа основана на реакции на изменение величины дифференциального тока в проводниках.

    Что такое датчик тока? Это самый распространенный трансформатор, но выполненный по типу тороидального сердечника.Порог устанавливается с помощью магнитоэлектрического реле с чрезвычайно высокой чувствительностью.

    Важно отметить, что все УЗО, выполненные по этой классической схеме, являются чрезвычайно надежными и простыми устройствами, обладающими очень высокой надежностью и надежностью.


    Следует предупредить, что сегодня существуют электронные УЗО, в основе которых лежит специальная электронная схема. Реле или цепь воздействуют на механизм, который в случае необходимости размыкает электрическую цепь. Это то, что включает в себя устройство УЗО.

    Какие детали привода?

    • Из группы прямого контакта установить на максимальный ток.
    • Пружина, которая сразу размыкает цепь, если в ее работе наблюдаются какие-либо сбои.

    Если вы хотите самостоятельно протестировать устройство на работоспособность, достаточно будет нажать на кнопку «Проверить». В этом случае на вторичную обмотку искусственно подается ток, и реле срабатывает (обязательно в любом случае). Так что при необходимости вы легко и без всяких затрат сможете проверить исправность всего вашего оборудования.

    Принцип работы УЗО

    Если говорить о нормальном режиме работы, то ток (I1 = I2) течет в обратном направлении, наводя магнитные токи во вторичной обмотке трансформатора (F1 = F2). У них абсолютно одинаковая ценность, за счет чего они взаимно компенсируют друг друга. Поскольку ток во вторичной обмотке в этом случае практически равен нулю, реле не может сработать.

    Срабатывание УЗО с утечкой

    Контакт с токопроводящими частями приводит к току утечки.В этом случае ток I1 не равен I2, и поэтому во вторичной обмотке появляется ток, величина которого достаточна для срабатывания защитного реле. Срабатывает пружинное переключение, УЗО отключается.

    Различия между двумя системами защиты

    Следует отметить, что освещение этого вопроса чрезвычайно важно, поскольку даже некоторые электрики иногда не могут различить эти устройства. Однако в этом нет ничего удивительного: они чрезвычайно похожи даже на фотографиях.

    Основное отличие дифавтомата от УЗО состоит в том, что они предназначены для нескольких разных целей. Об этом мы уже упоминали выше, но повторим еще раз: УЗО нельзя использовать для защиты оборудования и проводки от перегрузки или короткого замыкания! Причем перед УЗО в обязательном порядке установить автоматический выключатель, который убережет само устройство от подобного рода неприятностей. Этим УЗО отличается от дифифтомата.

    Обязательно учитывайте это при покупке или консультации с особо «вдумчивыми» электриками, которые с радостью сэкономят на собственном оборудовании.


    В этом плане дифультомат намного лучше, потому что он сочетает в себе и УЗО, и автоматический выключатель в одном корпусе. Соответственно, такое устройство не только защищает человека от поражения электрическим током, но и уберегает вашу электропроводку и оборудование от выгорания в случае короткого замыкания. Таким образом, УЗО и дифавтомат, разницу между которыми мы только что раскрыли, представляют собой несколько разные механизмы.

    Еще раз напоминаем, что дифференциальный автомат можно использовать в качестве предохранителя в домах, где существует постоянная опасность хронической перегрузки в сети.

    Это подробное различие между УЗО и дифавтоматом. Но как сделать правильный выбор в магазине? Ведь мы уже говорили, что эти устройства чрезвычайно похожи друг на друга даже на фотографиях.

    Покупаем правильно!

    Во-первых, обратите внимание на непосредственное название самого устройства. Сегодня практически все производители наконец-то встретили потребителей, соизволив указать на самом корпусе устройства, что перед вами — устройство или УЗО. Поэтому мы не рекомендуем покупать подобное оборудование китайского производства.Любопытные азиаты либо вообще ничего не указывают, либо делают это, используя свои собственные четкие обозначения.

    Примерно в эту же категорию входят советы по внимательному чтению маркировки, которая всегда должна быть указана на корпусе устройства или на его упаковке (менее надежный вариант).

    Итак, если вы видите на корпусе только величину номинального тока (16, например), а перед этим обозначением нет букв, значит, вы держите УЗО в руках. Обратите внимание, что «16» в данном случае означает «amp».Если перед числами стоят буквы B, C или D, значит, у вас в руках дифавтомат. Буквы обозначают типовые характеристики тепловых и электромагнитных расцепителей, но на бытовом уровне не стоит обращать на них особого внимания.

    Кроме того, не помешает посмотреть еще и схему подключения. Этот метод несколько сложнее, но дает 100% гарантию дифференциации. Эта информация также должна быть отображена на корпусе. Итак, если в схеме указано только наличие дифактома с обозначением «Тест», то перед вами УЗО (не перепутайте!).Соответственно, если там есть «Тест» и указаны пусковые катушки, значит, вы держите в руках дифференциальный автомат.


    Наконец, имеет смысл обратить внимание еще и на габаритные размеры. Если говорить о старых моделях дифавтоматов, то они намного шире, чем УЗО. В те времена просто не умели производить достаточно компактные релизеры, а потому требовался больший внутренний объем. Внимание! Просто все современные дифференциальные автоматы занимают меньше места!

    Однако важно предупредить, что на последний пункт серьезного внимания не обратят, так как в настоящее время существует огромное количество устройств, абсолютно идентичных по размеру.

    Перейти к главному

    Итак, дифавтомат или УЗО? Какой вывод можно сделать на основании вышеизложенного? Что лучше выбрать, что надежнее и подходит для эксплуатации в отечественных реалиях? Чтобы ответить на этот вопрос, сравним устройства сразу по шести показателям. Сопоставив все за и против, попробуем прийти к единому мнению.

    Объем, занимаемый устройством в панели приборов

    Конечно, в этом аспекте какие-либо существенные отличия увидят только люди, у которых в квартире очень мало места, что не позволяет разметить нормальный электрический щиток в коридоре. .Однако с учетом всеобщего стремления к компактности и красоте большинство в нашей стране. Кроме того, лучше заранее все разместить в как можно меньшем объеме, так как впоследствии створку не придется расширять, если возникнет необходимость в установке в квартире более мощного электрооборудования.

    Итак, в настоящее время УЗО (трехфазное — в том числе) занимает в щитке гораздо больше места, чем дифференциальный автомат. Какова причина? Самые внимательные читатели сами смогли найти ответ на этот вопрос в статье.


    Мы уже говорили о необходимости установки автоматической защиты перед УЗО, чтобы из-за этого вся конструкция в панели начала занимать больше места. Если вы установите там дифференциальную машину, вы сможете сэкономить немного места. Например: в стандартном случае УЗО с автоматическим отключением занимают сразу три модуля, а дифференциальный автомат — всего два.

    Таким образом, в этом «раунде» победил дифавтомат, позволивший ему оставить место для расширения конструкции.

    Простой монтаж

    Как и в других случаях, для многих электриков важна скорость и простота монтажа всей конструкции. Если вас интересует установка УЗО, фаза подводится к переключателю, а с его выхода устанавливается перемычка на вход отключающего устройства. Ноль также подключается ко входу. Следует отметить, что существует несколько схем подключения, которые изучают профессиональные электрики. Как правило, в повседневной жизни они не нужны.

    Как смонтировать дифференциальную машину?

    А что с подключением дифавтомата? Если говорить о дифференциальном автомате, то фаза и ноль сразу цепляются за входные клеммы устройства, так что в общей схеме перемычек и переходов намного меньше. Соответственно, внутреннее устройство пластин также значительно упрощается.

    Таким образом, подключение дифактома происходит намного проще и быстрее, так что в этом случае мы уверенно присуждаем ему победу.

    Преимущества эксплуатации

    Теоретически можно предположить, что однажды на линии розеток в ванной сработало УЗО. Сразу можно предположить, что где-то на линии произошла утечка. Конечно, алгоритм устранения неполадок несколько сложнее, но основные выводы можно сделать сразу.

    Если выключатель выключен, то причина вполне очевидна: перегрузка или короткое замыкание. Вам просто нужно выяснить причину и устранить ее.Учитывая, что причина отключения машины более-менее ясна, это будет не так уж и сложно.

    А теперь давайте рассмотрим все то же самое, но применительно к дифференциальному автомату. Когда вы его выключаете, причина сразу не выясняется, поэтому придется проверить все известные причины. Соответственно, это займет гораздо больше времени. Это то, что отличает УЗО от дифактомата в этом отношении.

    Таким образом, на данном этапе мы бы предпочли УЗО.

    Стоимость выпуска

    Так как сегодня на рынке огромное количество самых разных производителей, рассмотрим стоимость продукции EKF, которая довольно популярна среди профессиональных электриков.Так, стандартный ЭКФ-дифавтомат на 16 А стоит около 600 рублей, УЗО на такую ​​же силу тока — те же 600 рублей, а отключающее устройство — около 40 рублей. Приобретая все-таки на специализированных сайтах, вы можете рассчитывать на автоматические отключения, которые в таких случаях продаются чуть ли не на вес.

    Перед подключением дифавтомата следует убедиться в отсутствии частых и резких перепадов напряжения. Почему мы об этом говорим? Это станет ясно после рассмотрения вопроса о замене этого оборудования.

    Учитывая колебания стоимости в зависимости от поставщика, сложно говорить о преимуществах того или иного варианта.

    и стоимость замены

    Как и следовало ожидать, характеристики этого критерия автоматически вытекают из предыдущего. Всем известно, что любое электрооборудование имеет определенный срок эксплуатации, по истечении которого эксплуатировать его становится небезопасно. Предположим, что по той или иной причине вышло из строя УЗО или автоматический выключатель. Что делать дальше? Замените вышедшую из строя деталь, после чего система продолжит работать в прежнем режиме.

    А вот с дифавтоматом дело обстоит не так однозначно. Предположим, что обмотка любого из расцепителей вышла из строя, а встроенное УЗО во время тестирования показало свою полную работоспособность. Увы, но это не беда, так как в любом случае вам придется заменить весь дифавтомат, цена которого делает это мероприятие крайне убыточным. Гораздо проще заменить копеечный автомат, который выходит из строя чаще всего.

    Таким образом, победа в этом раунде снова за УЗО.

    Надежность работы

    Среди специалистов широко распространено мнение, что устройства, совмещающие сразу несколько функций, менее надежны по сравнению с машинами, которые предназначены только для одного дела.Так раз или дифавтомат? Что выбрать, чтобы обеспечить максимальную надежность?

    Об этом можно долго спорить, но практика однозначно показала, что на самом деле процент отказов практически такой же. Не исключено, что этот параметр зависит исключительно от производителя. Так что в данном случае сделать вывод о том, что устройство имеет однозначное преимущество, крайне сложно.

    Можно только сказать, что УЗО, схема подключения которого рассмотрена нами выше, предполагает большую надежность в условиях бытовых перепадов напряжения.Естественно, если не забыть подключить перед ним автоматическое отключение, о чем мы неоднократно упоминали выше.

    Таким образом, в большинстве случаев лучшим выбором будет УЗО. Однако все зависит от характеристик вашей сети, а также от размера электрического щита.

    Дифференциальный автомат — это модульное оборудование, объединяющее одновременно функциональность нескольких устройств. А точнее возможности машин, защищающих сеть от перегрузок и коротких замыканий (возникновения сверхтоков), и устройства защитного отключения (УЗО) — оборудования, защищающего людей, а также всего, что может соприкасаться с поврежденной частью. провода.То есть это устройство реагирует на утечку электричества. Поэтому дифференциальный автомат универсален и защищает вашу сеть.

    Основные функции

    1. Защита электрической сети от утечки тока на земную поверхность.
    2. Защита от перегрузок или коротких замыканий в цепях. Другими словами, это устройство фактически представляет собой автоматический выключатель и УЗО, которые объединены в одном корпусе.

    Дифференциальный автомат или УЗО благодаря своей высокой скорости обеспечивает максимальную защиту человека от воздействия электрического тока в случае его контакта с нетоковедущими и токоведущими частями.В первом случае они могут быть под напряжением, если изоляция оборудования нарушена или нарушена.

    Кроме того, этот автоматический выключатель, как и обычный автоматический выключатель, эффективно защищает электрические сети при возникновении в них сверхтоков — сверхтоков и токов короткого замыкания в электрических сетях.

    Способы защиты

    Защита человека с помощью дифференциальных машин следующим образом. При нормальной работе электрических устройств схемы происходит регулярное сравнение на нейтрали уходящего и входящего электрических токов.В случае обнаружения разницы, значение которой может быть опасным для жизни человека, происходит пропуск зажигания, то есть обесточивается защищаемая электрическая цепь.

    Защита электрической цепи от перегрузок и тока короткого замыкания организована с помощью модуля защиты (автоматического выключателя), встроенного в дифференциальный выключатель. В результате при прохождении токов, превышающих номинальный ток дифференциального устройства, машина мгновенно сработает, а неисправная цепь останется без электрического напряжения.

    Основные узлы

    Внутри дифференциального автомата происходит последовательное соединение узлов.

    1. Узлы автоматических выключателей:

    • биметаллическая пластина (термовыключатель), предохраняющая от перегрузки;
    • магнитный расцепитель, защищающий от короткого замыкания.

    2. Модуль дифференциальной защиты (электронный усилитель):

    • электронный усилитель с катушкой электромагнита; №
    • трансформатор, состоящий из тороидального сердечника, защищает от утечки электрического тока и защищает человека от поражения электрическим током.

    Как выбрать дифференциальную машину

    Это электрическое устройство выбирается исходя из расчетного и полного тока утечки. Следует выбирать такое оборудование, которое имеет максимальную коммутационную способность, для терминалов — на уровне 3000 А, для групповых устройств — 6000 А.

    Желательно выбирать из большого количества электронных дифференциальных автоматов с защитой от поломки. нейтрального проводника. Так как обрыв может спровоцировать пропадание питающего напряжения автоматами, что в результате сделает их неработоспособными.

    На что обращать внимание при выборе

    Если рассматривать типы дифференциальных автоматов, то стоит еще раз обратить внимание на то, что данное оборудование — отличное решение для обеспечения безопасной электропроводки.

    В целом типы дифференциальных устройств существенно различаются между собой по стоимости и техническим характеристикам. Поэтому при выборе дифференциального автомата (схема ниже) необходимо ориентироваться в первую очередь на текущие показатели и только после этого — на стоимость.

    Принцип действия

    Эти устройства обычно изготавливаются из диэлектрических материалов (практически непроводящих). Рабочая часть дифференциального оборудования состоит из планки сброса, обеспечивающей внешнее отключение, и механизма, выполняющего независимое отключение. На защитной части он отвечает за обнаружение утечки электрического тока и последующее отключение питания путем сброса переключателя.

    Кроме того, в конструкцию включены расцепители: электромагнитный и тепловой.Последний срабатывает при обнаружении перегрузки в сети, первый в случае отключения цепи.

    Утечка обрабатывается трансформатором, который фиксирует изменения напряжения в проводниках, подающих питание на защищаемую группу. Автоматическое отключение происходит при обнаружении утечки — наличии тока во вторичной обмотке.

    Схема подключения дифференциального автомата

    Установка дифференциального устройства достаточно проста: он фиксируется на DIN-рейке распределительного щита с помощью защелки, которая находится на задней стороне корпуса.Выполнить заземление обязательно, так как без него дифференциальный автомат работать не может. После установки оборудование проверяется под нагрузкой. Нажата кнопка «Тест», в результате выключатель должен сразу выключиться.

    Важно правильно подобрать количество ампер и рассчитать нагрузку потребителей, чтобы избежать перегрузки с последующим ее отключением.

    Подключение дифференциальной машины возможно по следующим схемам:

    1. К входу подключается дифференциальное устройство.Такая схема защитит все группы электрической цепи.
    2. На каждую силовую цепь установлена ​​отдельная машина. Он защищает все связанные с ним элементы.

    Для первого случая есть одна недоработка. Когда происходит автоматическое отключение, вся сеть обесточивается. Во втором случае отключается только отдельная группа, что намного практичнее и удобнее. Но при этом первая схема подключения дифференциального автомата занимает мало места, а главное — дешевле.

    Пошаговая инструкция

    Меры предосторожности

    Дифференциальные устройства нельзя устанавливать на группу розеток, к которым планируется подключать персональные компьютеры, так как они могут спровоцировать ложные срабатывания, что приведет к повреждению вычислительное оборудование.

    Кроме того, нельзя совмещать линию других автоматов с нулевой линией, так как по этим линиям протекают совершенно разные токи, что также приведет к отключению дифференциального автомата.

    Как работает выключатель

    В жилищном секторе автоматические выключатели, управляемые дифференциальным током, появились около 10 лет назад. Не успел потребитель привык к аббревиатуре «УЗО» (устройства защитного отключения), как появился новый стандарт, согласно которому они теперь должны называться ВДТ (переключатели дифференциального тока). Как бы вы это ни называли, цель этих устройств одна и та же: размыкать цепь при утечке тока (то есть, когда ток на «фазе» отличается от тока на нейтральном проводе).

    Основной узел устройства — сумматор (в виде тора). На нем — несколько витков фазного и нулевого проводов. Обмотка имеет встречное соединение, и результирующее магнитное поле равно нулю в случае исправной работы оборудования. При возникновении утечки баланс нарушается, и во вторичной обмотке наводится напряжение, которое через расцепитель отключает электрическую цепь с поврежденной изоляцией. Этот процесс происходит за десятые и даже сотые доли секунды.

    Чем может помочь дифференциальный переключатель тока

    Хотя в наших домах уже есть «евророзетки» с заземляющим контактом, часто он никуда не подключается, а к электроприборам ведут только два провода — фазный и PEN-проводник (который служит и нейтральным, и защитным. ). Возникает вопрос: смогут ли дифференциальные переключатели тока спасти человека с такой схемой питания (по науке она называется TN-C)?

    Защитное устройство сравнивает токи, протекающие по двум проводам к потребителю и от него.Когда, скажем, наш холодильник или другое устройство работает, их значения равны, и все работает нормально. Но потом на корпусе произошла поломка (и здесь это не обосновано). Утечки не происходит — токи остаются прежними, однако на корпусе появляется опасный потенциал. В этом случае человек, который одновременно коснется холодильника и радиатора центрального отопления или сантехнической арматуры, получит ощутимый удар и одновременно откроет путь току заземления.Если ВДТ сработает, все останутся живы, избавившись от страха, но без защитного устройства последствия будут гораздо серьезнее.

    Вы можете избавиться от острых ощущений, подключив отдельную заземляющую шину PE. В этой схеме VDT разорвет цепь даже при появлении напряжения на корпусе холодильника.

    Какой переключатель дифференциального тока выбрать?

    Синусоидальный ток протекает через потребителей электроэнергии без сложных цепей управления, и утечка имеет такую ​​же форму.Для защиты в этом случае примените устройство типа AC.

    В современных бытовых и промышленных приборах и установках часто встречаются выпрямители, регуляторы, схемы управления с отсечкой по фазе и т. Д. Токи утечки в этом случае также отличаются от синусоидальной формы, и для их обнаружения требуется ВДТ типа А.

    Для владельцев больших коттеджей представляют интерес устройства S-типа (селективные). Они имеют малое время задержки отключения и устанавливаются в главную цепь, когда ответвления VDT типа A и AC.

    Дифференциальный переключатель тока реагирует только на разницу значений тока и не способен выдерживать перегрузки или короткие замыкания (во всяком случае, он для этого не предназначен). Поэтому в цепи выключатель всегда включен последовательно с ней. Однако многие фирмы выпускают устройства, сочетающие в себе функции обоих устройств. Формально они называются автоматическими выключателями с дифференциальным управлением по току и встроенной максимальной токовой защитой.

    По конструкции различают электромеханический и электронный ВДТ.Первый не требует питания. Для их работы достаточно появления дифференциального тока. Во-вторых, присутствует электронная схема, и для ее работы требуется энергия либо от управляемой сети, либо от внешнего источника.

    Электромеханические устройства более надежны, и они продолжают выполнять защитные функции даже при обрыве проводов.

    Маркировка переключателя

    В соответствии со стандартом на передней панели каждого переключателя должно быть указано значение номинального тока, который он может проводить в непрерывном режиме, и номинальный дифференциальный ток отключения, вызывающий отключение устройства.Остальную информацию можно разместить на боковых поверхностях. Обычно производитель также может указать на передней панели свое название, номинальное напряжение, марку и тип прибора. Последняя представлена ​​в виде символа: синусоида — это тип переменного тока, а если под ней два положительных полупериода, то это тип А. И, конечно, чтобы понять назначение кнопки, положим слово «Тест» или буква «Т» на нем.

    Где проходили испытания

    Независимые испытания ВДТ проводили специалисты аккредитованного Центра электротехнических испытаний ОАО «Электропривод».Аппараты прошли испытания на соответствие ГОСТ Р 51326.1-99 (МЭК 61008-1-96) «Выключатели автоматические дифференциальным током бытового и аналогичного назначения без встроенной максимальной токовой защиты. Часть 1. Общие требования и методы испытаний. »

    Что и как проверяли

    Производители и представительства компаний предоставили два образца АСД биполярного переменного тока, рассчитанные на номинальный ток нагрузки 40 А и отключающий дифференциальный ток 30 мА.Программа была составлена ​​таким образом, что каждое испытание проводилось только на одном из них. Конечно, сделать однозначный вывод о достоверности результатов измерений параметров только на одном образце невозможно, но все же можно с некоторой уверенностью судить о качестве продукции.

    1. Повышение температуры на внешних клеммах. В пожарной статистике возгорание оборудования, установленного в электрощитке, не последнее. Причина — местное повышение температуры.

    Номинальный ток пропущен через все полюса VDT. Измерение с помощью термопары проводилось при установившейся температуре. Практически ожидалось, когда его изменение стало меньше 1 градуса за 1 минуту.

    Сначала были испытаны новые образцы, затем, чтобы определить, как на этот параметр будут влиять множественные механические и электрические нагрузки, снова измерили температуру после проверки износостойкости (испытание 1, вторая строка). Не некоторые приборы не стали узнавать установленное значение температуры, а перестали измерять при выходе за допустимый предел.

    Из новинок лишь образцы фирм Kopp и Legrand слегка «не соответствовали» требованиям ГОСТ. После испытаний на долговечность они не стали лучше, и к ним добавились IEK, General Electric и DEC. Причем у GE температура была на два градуса выше предельной, а у IEK — на 0,4 (и это с погрешностью измерения ± 4 градуса). Подходя к результатам формально, надо признать, что эти цифры превышают допустимые стандартом.

    Моделируя реальную жизненную ситуацию, мы придумали тест, не входящий в стандарт.Провода в клеммах зажали до конца, потом отпустили на пол-оборота и замерили, насколько слегка греются такие «неплотные» выводы. Все образцы, превышающие температуру до предельного значения, единогласно продемонстрировали, что такие условия для них не подходят. Из этого «негостовского» теста следует один практический вывод: очень важно следить за состоянием внешних выводов дифференциальных выключателей и периодически подтягивать на них винты для обеспечения полного контакта.

    2. Износостойкость. Нажатие на ручку VDT или проверка с помощью кнопки «Тест» не должно происходить так часто, как нажатие клавиши переключения. Но все же устройство должно быть устойчивым к этой процедуре.

    Испытание заключается в проверке механической прочности устройства и его способности многократно размыкать цепь протекающим очень большим током. В соответствии со стандартом VDT должен выдерживать 2000 рабочих циклов при номинальном рабочем токе: первые 1000 с рычагом отключения, затем 500 с кнопкой «Тест» и последние 500 с дифференциальным током, проходящим через один полюс. устройства.

    Надо признать, что сотрудники испытательной лаборатории оказались невнимательными, и первые 1000 циклов проводились без подключения нагрузки, то есть проверяли только то, как работают механизмы. Наши образцы тестировались редко, но следует отметить, что в реальной жизни встречаются редкие ситуации, когда VDT должен разрывать цепь с током 40 А.

    Все торговые марки прошли проверку, за исключением продукции российского предприятия «ТЕСС-инжиниринг» — 1030-й цикл оказался для нее последним.

    3.. Конструкция устройств и используемые материалы должны предотвращать образование утечек между токоведущими частями или пробой изоляции.

    В данном испытании сопротивление измерялось путем подачи напряжения постоянного тока 500 В с замкнутыми контактами на один и другой полюс, а с разомкнутыми контактами — на разные выводы каждого полюса. По стандарту оно не должно превышать 2 МОм.

    Все испытанные образцы успешно прошли данное испытание.

    4.Время отклика. VDT защищает человека, ограничивая время протекания тока через его тело. По ГОСТу они должны сработать менее 0,3 с.

    Этот параметр проверяли путем организации внезапной утечки тока равной 30 мА. Было проведено пять измерений, в результате чего было получено среднее значение.

    Все образцы показали хорошие результаты, отключение в основном через 0,08 с. Только в DEC время составляет 0,14 с, но это все равно значительно ниже предела.

    5. Отключающий дифференциальный ток. Жизнь человека может зависеть от силы тока, при котором VDT размыкает цепь. Наши образцы номиналом 30 мА по стандарту должны отключать потребителя при утечке от 15 до 30 мА.

    Для измерения этого параметра дифференциальный ток постепенно увеличивали с 6 мА, стараясь достичь 30 мА не быстрее, чем за 30 с. Провел пять замеров, зафиксировав значение тока отключения. В таблицу занесено среднее значение.

    Для всех товарных знаков он находится в допустимых пределах, и только для образца DEK немного выше (31 мА).

    6.. Поведение реле дифференциального тока при коротких замыканиях характеризуется несколькими параметрами:

    номинальный условный ток короткого замыкания — Inc (по ГОСТу диапазон значений 3000, 4500, 6000 и 10000 А). Лицевая панель обычно обозначается цифрой в прямоугольной рамке.

    VDT, рассчитанный, скажем, на 3000 А, вообще не должен пропускать через себя такой ток, но он должен выдерживать фронт его нарастания, пока автоматический выключатель не отключит цепь (обычно ток не успевает достичь своей максимальное значение).Чем больше ток короткого замыкания, тем круче передок и тем больше «удар» (в буквальном смысле) составляют детали и узлы устройства.

    Inc — определяет надежность и долговечность устройства, качество работы его механизма и электрических соединений;

    номинальная коммутационная способность — Im (некоторые производители указывают еще и на лицевую панель). VDT должен проводить этот ток до срабатывания дифференциальной защиты и, конечно же, выключать ее.Этот параметр, определяющий надежность ВДТ, зависит от качества силовых контактов, мощности пружинного привода, материала деталей, наличия дугогасящей камеры;

    номинальная коммутационная способность по дифференциальному току — IΔm . Параметр аналогичен предыдущему, с той лишь разницей, что определяет дифференциальную перегрузку по току, например, при коротком замыкании на корпус.

    Тест проводился с целью выяснить, как короткое замыкание в целом действует на ВДТ: выдержит ли устройство такую ​​нагрузку, защитит ли оно человека от поражения электрическим током, а дом — от пожара.

    Между выводами одного и другого полюсов создавался номинальный условный ток К3 3000 А (наименьший из предложенных ГОСТов). Предполагалось, что промышленный бытовой автоматический выключатель, подключенный последовательно с переключателем дифференциального тока, среагирует и отключит цепь. Но из-за несоответствия характеристик стендового переключателя и наших образцов при тестировании в большинстве случаев этого не произошло. Отключались не «автомат», а защитные устройства.Таким образом, мы подтвердили справедливость рекомендаций специалистов: они использовали в схеме УЗО и «автоматы» одного производителя.

    Фактически мы проверили параметр Im, но с током, значительно превышающим указанный в паспортных данных. Неудивительно, что некоторые VDT (ABB, IEK, Legrand) не выдержали столь жестких испытаний. Однако остальные все же уцелели.

    Справочно: даже в новостройках, где качество электрических сетей выше, ток КЗ в квартире вряд ли превысит 1 кА.

    Таблица результатов испытаний выключателей дифференциального тока по ГОСТ Р 51326.1-99 (МЭК 61008-1-96)

    Параметры испытаний Производитель, модель
    ABB F362 «Астро-УЗО» серии Ф ДЭК УЗО 01 GE V / 304 ИЭК ВД1-63
    нового образца 25 46 32 61 47
    52 44 72 * 67 65
    с недостаточными контактами 94 68 71 97 * 85
    Износостойкость + + + + +
    Прочность изоляции + + + + +
    0,08 0,07 0,14 0,08 0,08
    27 28 31 29 24
    Работоспособность при токах короткого замыкания + + +

    Продолжение таблицы

    Параметры испытаний Производитель, модель
    Kopp RCD Легран 086 29 Moeller CFI6 «ТЭСС-инжиниринг» БК3 Siemens 5SM1
    Избыточная температура на внешних клеммах, | C нового образца 76 73 52 50 63
    после ресурсных испытаний 87 * 75 * 62 нет данных 63
    с недостаточными контактами 123 * 74 * 106 * нет данных 91 *
    Износостойкость + + + 1030 циклов +
    Прочность изоляции + + + нет данных +
    Время отклика (среднее значение по пяти измерениям), с 0,08 0,08 0,08 0,10 0,10
    Ток отключения (среднее значение по пяти измерениям), с 19 22 20 23 25
    Работоспособность при токах короткого замыкания + + + +
    * — через 30 минут

    В этой статье мы подробно разберем:

    • Что такое дифавтомат?
    • Его назначение, применение и характеристики.
    • Узнайте, чем отличается УЗО от дифавтомата?
    • Поговорим о существующих стандартах и ​​типах AVDT

    Что такое дифавтомат?

    Дифференциальные машины (их еще называют дифавтоматами или АВДТ) в технической литературе определяются как автоматические выключатели, которые срабатывают при появлении в сети дифференциальных токов. Кроме того, дифференциальная машина обязательно имеет защиту от сверхтоков в виде теплового и электромагнитного расцепителя.В этом случае дифференциальный модуль должен одновременно выполнять три функции: определять дифференциальный ток, сравнивать его с заданным значением и отключать защищенную сеть, если diff. ток превысил свое значение.

    Такое определение создает условия для некоторой путаницы в названиях и не дает ответа на вопрос — чем отличается дифференциальный автомат от УЗО со встроенной максимальной токовой защитой? Те. Обычным критерием является то, что схема явно недостаточна, поскольку УЗО со встроенной защитой включает автоматический выключатель, обеспечивающий защиту от сверхтоков.Так чем же отличается дифактомат от УЗО?

    Чтобы получить все ответы, достаточно обратиться к официальным документам технического регламента и внимательно прочитать несколько страниц стандартов ГОСТ Р 51326.1-99, ГОСТ Р 51327.1-99 и ГОСТ Р 50807-95 (2001). Они содержат исчерпывающую информацию, исключающую разногласия. На основании этих данных можно ответить на еще один очень известный вопрос жителей, узо или дифавтомат, что выбрать?

    Для более быстрого изучения и понимания информации она систематизирована и сведена в таблицу ниже.Обратите внимание на графу «назначение».

    Таблица 1. Отличия УЗО, дифференциальных выключателей и дифференциальных выключателей

    УЗО или дифавтомат что выбрать? — ответ на этот вопрос будет зависеть от задачи, поставленной перед устройством. Поясним.

    Из приведенных выше данных следует, что основным отличием дифавтомата от УЗО будет не столько компоновка, сколько возможность и предназначение. Дифференциальный модуль АВДТ предназначен для защиты людей при непрямом контакте, а УЗД — при непрямом и ПРЯМОМ ** прикосновении.Другими словами, дифференциальный автомат не предназначен для спасения человека, прикоснувшегося к оголенному проводу, находящемуся под напряжением, в то время как УЗО может справиться с такой задачей.

    В остальном — защита от сверхтоков и последствий токов утечки. Возможности вспомогательной защиты от перегрузки и УЗО со встроенной максимальной токовой защитой идентичны. Соответственно, ознакомиться с принципом работы AVDT можно на страницах, описывающих работу дифференциального модуля () и.

    Стандарты

    Общие требования, основные характеристики и методы испытаний бытовых и аналогичных АВДТ изложены в ГОСТ Р 51327.1-99, дополнениях к ГОСТ Р 51327.2-99. Оба стандарта эквивалентны соответствующим стандартам IEC. Их действие распространяется на АВДТ на напряжение не более 440 В переменного тока с частотой 50 или 60 Гц, зависимой и независимой от сетевого напряжения, с номинальными токами не более 125 А и с наибольшими коммутационными возможностями, не превышающими 25000 А по номиналу. .

    Различные типы AVDT

    В ГОСТ Р 51327.1-99 принята классификация дифференциальных автоматов по ключевым показателям. Для более удобного использования все типы сведены в Таблицу 2.

    Таблица 2. Классификация дифференциальных автоматов

    Конструкция дифференциальных автоматов (дифференциальных автоматов)

    В начале этой страницы уже была дана информация об устройстве дифференциальных автоматов (АВДТ), из чего очевидно, что их конструкция не содержит каких-либо специальных элементов.Здесь в едином корпусе собраны: блок механической коммутации со свободным расцеплением, электромагнитный и тепловой расцепитель, плюс дифференциальный модуль. Работа любого из них приводит к остановке машины. Отдельно эти узлы рассматривались в разделах по и. Часто производители используют стандартизированные корпуса и основные компоненты с небольшими вариациями.

    Характеристики бытовой дифференциальной техники (дифавтоматов)

    Предыдущий список описывает классификацию дифференциальных автоматов по их наиболее важным конструктивным особенностям и техническим показателям.Почти все они также входят в число наиболее важных характеристик, сообщаемых производителями, и в стандарте ГОСТ Р 51327.1-99 указаны их предпочтительные значения. Они показаны в следующей таблице.

    Таблица 3. Характеристики дифференциальных машин домашней автоматизации


    Применение дифференциальных автоматов (дифференциальных автоматов) ГОСТ Р 51327.1–99

    Российские и зарубежные АВДТ (дифавтоматы) отечественного и аналогичного назначения используются в основном в жилищном секторе.Они также находят применение в электроснабжении небольших промышленных и коммерческих объектов с напряжением до 400 В. Они помогают защитить электрооборудование от сверхтоков и снизить риск возгорания из-за отключения при возникновении утечек. Также дифференциальные автоматы обеспечивают защиту персонала от поражения электрическим током при прикосновении к корпусам и деталям электроустановок в случае нарушения изоляции.

    .