Батарея снизу холодная сверху горячая: Почему нижняя часть батареи холодная верх горячий что делать

Почему радиатор отопления сверху горячий снизу холодный: решение проблемы

Редко кто из городских жителей не сталкивался при проверке радиатора отопления с ощущением более нагретой верхней части. Если разница не сильная — нормально, но существенное отличие температуры верхней поверхности от нижней сигнализирует о неправильной работе отопительной системы.

Ответить на вопрос, почему радиатор отопления сверху горячий, а снизу холодный помогает знание принципов работы системы и причин, вызывающих неисправность. Рассмотрим функционирование батареи и возможные сбои в процессе теплоотдачи.

Какие проблемы вызывает неравномерный нагрев

Содержание статьи

  • 1 Какие проблемы вызывает неравномерный нагрев
  • 2 Причины неравномерного нагревания батарей
    • 2.1 Радиатор засорился
    • 2.2 Неправильно работает запорная арматура
    • 2.3 Низкое давление в системе
    • 2.4 Неправильный монтаж радиатора
    • 2.5 Низкая скорость циркуляции теплоносителя
    • 2. 6 Холодное помещение
  • 3 Устранение неполадок своими руками (пошаговая инструкция)
    • 3.1 Видео

Неправильно работающий отопительный прибор не сможет нагреть помещение до необходимой температуры. Может измениться циркуляция теплоносителя, и повысится риск засорения и коррозии батареи.

Причины неравномерного нагревания батарей

При подходе к различного рода ремонтным работам полезно пользоваться правилом — идти от простого к сложному. Часто причина неисправности устраняется путем профилактического обслуживания.

Ответ на вопрос, почему батареи отопления снизу холодные сверху горячие, кроется в следующем:

  • не полностью открыты или закрыты краны запорной арматуры;
  • в систему попал воздух, и образовалась пробка;
  • в радиаторе накопилось много отложений солей и примесей, мешающих циркуляции;
  • сломались перекрывающие краны и нарушились условия равномерного движения теплоносителя;
  • радиатор подключен неправильно;
  • в системе низкое давление или скорость движения теплоносителя;
  • помещение слишком холодное.

Радиатор засорился

Вода в системах центрального теплоснабжения в своем составе имеет примеси солей, которые оседают в любом удобном месте (повороты, изгибы, углубления, раковинки на внутренней поверхности).

Теплоноситель может содержать различные посторонние примеси:

  • металлическую стружку и ржавчину;
  • песок;
  • кусочки прокладок и сантехнического уплотнителя резьбовых соединений.

Со временем внизу батареи отопления скапливается желеобразная масса, закупоривающая пути движения жидкости. Со временем субстанция грязи может перейти в твердое состояние.

Неправильно работает запорная арматура

Установленные на подводящей и отводящей к батарее трубе краны должны быть открыты и свободно пропускать потоки теплоносителя. Неисправность может привести к изменению давления и режима циркуляции рабочей жидкости.

Поломкой считается неправильная работа запирающего механизма крана, невозможность повернуть его в закрытое или открытое положение.

Низкое давление в системе

Подача теплоносителя в систему осуществляется под воздействием установленного давления. Если его показатель ниже нормы, рабочая жидкость не сможет полностью заполнить радиатор, в итоге эффективной теплоотдачи не будет.

Снижение давления может быть вызвано рядом причин:

  1. Неисправность на центральной котельной или магистрали.
  2. Не достаточно открытая запорная арматура на стояках подачи тепла и трубах.
  3. Увеличение объема теплообменников, например, установка сверх нормы секций радиаторов или оборудования для «теплого пола».

Неправильный монтаж радиатора

Батареи подключаются к системе отопления по установленной схеме. Изменение порядка подвода и отвода рабочей жидкости приводит к нарушению ее циркуляции или полному прекращению движения. Неправильно присоединить радиатор могут «специалисты» с низкой квалификацией или владельцы помещений, взявшие на себя функции сантехников.

Низкая скорость циркуляции теплоносителя

Снижение времени передвижения жидкости в отопительном радиаторе приведет эффекту теплого верха и холодного низа.

Выше уже называлось падение давления в системе как причина снижения скорости циркуляции. Еще одним фактором, влияющим на движение жидкости в теплосети, можно назвать нарушение работы естественного (гравитационного) типа отопления, то есть создание пробок, препятствий движению и так далее.

Холодное помещение

В комнате с низкой температурой теплоноситель остывает быстрее, и батарея снизу, ближе к отводящей трубе, будет холоднее, чем в области подачи горячей жидкости.

Устранение неполадок своими руками (пошаговая инструкция)

Причины неправильной работы системы отопления, на которые указывает большая разница в температуре верха и низа радиатора, рассмотрены. Остается определиться с планом действий при их возникновении. Сразу следует отметить невозможность устранения некоторых проблем самостоятельно. При ощущении холода в помещении и обнаружении сильного различия температуры верхней и нижней частей батареи необходимо по порядку выполнить ряд мероприятий.

Алгоритм действий:

  1. Проверить и открыть полностью краны подачи и отвода на трубах батареи. При обнаружении неисправности следует провести замену выведенных из строя узлов ремонтируемой запорной арматуры или заменить ее полностью, если ремонт невозможен.
  2. Стравить воздушную пробку из батареи, если имеется клапан или кран, подставив подходящую емкость для жидкости и соблюдая осторожность. При наличии воздуха вода из крана будет вырываться толчками с характерным шипением.
  3. Если не помог сброс воздуха, можно приступить к проверке и при необходимости очистке радиатора от внутреннего загрязнения. Закрыв краны на трубах и, поместив под радиатор подходящую емкость, открутить сливную пробку, о наличии загрязнения укажет вытекающая темно-коричневая субстанция (почти черная).
  4. Если грязи, воздуха нет и при условии, что до начала отопительного сезона выполнялись какие-либо сантехнические работы на системе отопления, следует проверить правильность подключения радиатора. При обнаружении неправильного монтажа самостоятельно или вызвав мастеров из обслуживающей дом компании необходимо привести установку батареи в соответствие с утвержденной схемой.
  5. При низком давлении и скорости циркуляции рабочей жидкости, когда все прочие проверки и мероприятия проведены, нужно позвонить в управляющую компанию или в организацию, осуществляющую подачу тепла, узнавать срок устранения проблемы.
  6. Если в помещении холодно, то целесообразно подождать пока оно прогреется, не исключена вероятность, что во время отсутствия хозяина центральное отопление по каким-то причинам было отключено. По мере согревания комнаты разница в нагреве верха и низа может прийти в норму.

Самое главное, помнить о мерах безопасности, так как горячая вода под давлением может не только повредить окружающий интерьер, но и нанести вред здоровью. Оребренная труба вы можете узнать по ссылке.

Видео

В представленном видео-ролике показан процесс спуска воздуха из радиатора.

Понравилась статья?
Сохраните, чтобы не потерять!

Оцените статью:

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

0

Половина радиатора холодная? — МФЦО Энергосбыт

04.02.2021

                  Во время отопительного сезона на наш сайт часто поступают вопросы: половина батареи теплая, половина – холодная. 

                  Почему половина батареи холодная? 

                  В данном случае рассматриваются следующие ситуации: 

            · неправильное подключение радиатора; 

            · наличие воздушных пробок и загрязнений внутри нагревательного элемента; 

            · заужено сечение подающей трубы. 

                 Когда радиатор подключен неправильно. Главной причиной, почему батарея наполовину холодная, может быть ее неправильное подключение. Согласно правилам монтажа нагревательного оборудования в контуре отопления, патрубок, подающий горячий теплоноситель, должен подключаться к верхней части батареи. Холодный патрубок или обратка, наоборот, к ее нижней части.  

                 Загрязнения внутри нагревательного прибора. Мусор, ржавчина, как результат коррозии внутренней части контура отопления, могут привести к тому, что батареи наполовину холодные. Что делать в такой ситуации? Перед началом отопительного сезона, особенно если тепловая разводка организовывалась несколько десятилетий назад, необходимо прочищать радиаторы. Для этого вызывается слесарь из соответствующей службы и им выполняются все работы. 

                 Воздушные пробки. Они могут быть причиной, почему половина батареи холодная. Их наличие проверить легко, если подающая труба и обратка нагревательного элемента оснащены шаровыми кранами или терморегуляторами. Их просто перекрывают. Затем открывают верхний кран, в то время, когда нижний остается закрытым всего лишь 10-15 сек. Если в момент поступления теплоносителя слышны посторонние звуки и бульканье, внутри нагревательного элемента присутствует воздух. Он препятствует свободной циркуляции горячей воды, потому не греет половина батареи. Решить проблему можно обычным стравливанием воздуха, что так же уполномочен делать слесарь. 
              

                Заужено сечение подающей трубы. Нагревательный элемент монтирован правильно, он новый и внутри нет воздуха, а батарея наполовину холодная. Причина: установлен терморегулятор или кран с зауженным проточным сечением. Что это значит? Через трубу с зауженным сечением в радиатор попадает в два раза меньше теплоносителя. Как результат, скорость перемещения воды в радиаторе уменьшается, следовательно, снижается и температура его поверхности. 

                   ООО «МФЦО «Энергосбыт» сообщает о том, что согласно п.6 и п.8 Постановления Правительства РФ от 13.08.2006г. №491 (ред. от 12.10.2018) внутридомовая система отопления и горячего водоснабжения до внешней границы стены многоквартирного дома является общим имуществом жителей многоквартирного дома.  
                 В связи с чем, представители ООО «МФЦО «Энергосбыт» не уполномочены проводить какие-либо работы, проверки и иные действия в Вашем доме. 

                 Вы можете вызвать представителя РСО для замера температуры воздуха в жилом помещении, если температура воздуха не будет соответствовать установленным нормам, на основании замера будет произведен перерасчет начисляемой платы за коммунальную услугу «отопление». Обращаем Ваше внимание на то, что согласно ГОСТ 30494-2011 замер показателей микроклимата выполняется при температуре наружного воздуха не выше минус 5 С, так же не допускается проведение измерений при безоблачном небе в светлое время суток. 

БУ-410: Зарядка при высоких и низких температурах

Аккумуляторы работают в широком диапазоне температур, но это не дает права заряжать их и в этих условиях. Процесс зарядки более деликатный, чем разрядка, поэтому необходимо соблюдать особую осторожность. Сильный холод и высокая температура снижают прием заряда, поэтому перед зарядкой аккумулятор следует довести до умеренной температуры.

Аккумуляторы старых технологий, такие как свинцово-кислотные и никель-кадмиевые, имеют более высокие допуски на зарядку, чем более новые системы, такие как литий-ионные. Это позволяет им заряжаться при температуре ниже точки замерзания с пониженным C-скоростью заряда. Когда дело доходит до холодной зарядки, NiCd более вынослив, чем NiMH. Свинцово-кислотные аккумуляторы также устойчивы, но литий-ионные аккумуляторы требуют особого ухода.

В таблице 1 приведены допустимые температуры заряда и разряда обычных аккумуляторов. В таблицу не включены специальные аккумуляторы, предназначенные для зарядки за пределами этих параметров.

Тип батареи Температура заряда Температура нагнетания
Консультация по оплате
Свинцово-кислотный от –20°C до 50°C
(от –4°F до 122°F)
от –20°C до 50°C
(от –4°F до 122°F)
Заряжайте при температуре 0,3°C или ниже при температуре ниже нуля.
Понижение порога напряжения на 3 мВ/°C в горячем состоянии.
NiCd, NiMH от 0°C до 45°C
(от 32°F до 113°F)
от –20°C до 65°C
(от –4°F до 149°F)
Зарядка при 0,1°C в диапазоне от –18°C до 0°C.
Заряжайте при 0,3°C в диапазоне от 0°C до 5°C.
Прием заряда при 45°C составляет 70%. Прием заряда при 60°С составляет 45%.
Литий-ионный от 0°C до 45°C
(от 32°F до 113°F)
от –20°C до 60°C
(от –4°F до 140°F)
Зарядка при температуре ниже нуля не допускается.
Хорошие характеристики заряда/разряда при более высокой температуре, но более короткий срок службы.
Таблица 1: Допустимые пределы температуры для различных аккумуляторов

Аккумуляторы могут разряжаться в широком диапазоне температур, но температура заряда ограничена. Для достижения наилучших результатов заряжайте аккумулятор при температуре от 10°C до 30°C (от 50°F до 86°F). Уменьшите ток заряда в холодном состоянии.

Низкотемпературная зарядка

На основе никеля: Быстрая зарядка большинства аккумуляторов ограничена температурой от 5°C до 45°C (от 41°F до 113°F). Для достижения наилучших результатов рекомендуется сузить температурный диапазон до 10–30 °C (от 50 °F до 86 °F), поскольку способность рекомбинировать кислород и водород снижается при зарядке аккумуляторов на основе никеля при температуре ниже 5 °C (41 °F). . При слишком быстрой зарядке в ячейке нарастает давление, что может привести к сбросу газа. Уменьшите зарядный ток всех никелевых батарей до 0,1C при зарядке ниже нуля.

Зарядные устройства на основе никеля с определением полного заряда NDV (отрицательное деление V) обеспечивают некоторую защиту при быстрой зарядке при низких температурах. Плохой прием заряда при низких температурах имитирует полностью заряженную батарею. Частично это вызвано повышением высокого давления из-за пониженной способности рекомбинировать газы при низкой температуре. Повышение давления и падение напряжения при полной зарядке кажутся синонимами.

Для обеспечения быстрой зарядки при любых температурах в некоторые промышленные аккумуляторы добавляется термоодеяло, которое нагревает аккумулятор до приемлемой температуры; другие зарядные устройства регулируют скорость зарядки в соответствии с преобладающей температурой. Потребительские зарядные устройства не имеют этих условий, и конечному пользователю рекомендуется заряжать только при комнатной температуре.

Свинцово-кислотные: Свинцово-кислотные достаточно терпимы к экстремальным температурам, как показывают стартерные аккумуляторы в наших автомобилях. Частично эта терпимость объясняется их вялым поведением. Рекомендуемая скорость зарядки при низкой температуре составляет 0,3°С, что практически соответствует нормальным условиям. При комфортной температуре 20°C (68°F) выделение газа начинается при зарядном напряжении 2,415 В/элемент. При переходе к –20°C (0°F) порог газовыделения повышается до 2,97 В/элемент.

Свинцово-кислотная батарея заряжается постоянным током до заданного напряжения, которое обычно составляет 2,40 В на элемент при температуре окружающей среды. Это напряжение зависит от температуры и устанавливается выше, когда холодно, и ниже, когда тепло. На рис. 2 показаны рекомендуемые настройки для большинства свинцово-кислотных аккумуляторов. Параллельно на рисунке также показано рекомендуемое напряжение плавающего заряда, к которому возвращается зарядное устройство, когда батарея полностью заряжена. При зарядке свинцово-кислотных аккумуляторов при колебаниях температуры зарядное устройство должно иметь регулировку напряжения, чтобы свести к минимуму нагрузку на аккумулятор. (См. также BU-403: Зарядка свинцово-кислотного аккумулятора)

0113 [1]
Зарядка при низких и высоких температурах требует регулировки предела напряжения.

Замерзание свинцово-кислотного аккумулятора приводит к необратимому повреждению. Всегда держите аккумуляторы полностью заряженными, так как в разряженном состоянии электролит становится более водянистым и замерзает раньше, чем при полном заряде. По данным BCI (Международный совет по аккумуляторным батареям), удельный вес 1,15 соответствует температуре замерзания –15°C (5°F). Это сопоставимо с -55°C (-67°F) для удельного веса 1,265 с полностью заряженной стартерной батареей. Залитые свинцово-кислотные аккумуляторы имеют тенденцию к растрескиванию корпуса и протечке при замерзании; герметичные свинцово-кислотные аккумуляторы теряют свою эффективность и работают всего несколько циклов, после чего исчезают и требуют замены.

Литий-ион: Литий-ион можно быстро заряжать от 5°C до 45°C (от 41 до 113°F). Ниже 5°C ток заряда должен быть уменьшен, а зарядка при отрицательных температурах запрещена из-за снижения скорости диффузии на аноде. Во время зарядки внутреннее сопротивление элемента вызывает небольшое повышение температуры, которое частично компенсирует холод. Внутреннее сопротивление всех аккумуляторов возрастает в холодном состоянии, что заметно увеличивает время зарядки. Это также заметно влияет на производительность разряда литий-ионных аккумуляторов.

Многие пользователи аккумуляторов не знают, что литий-ионные аккумуляторы потребительского класса нельзя заряжать при температуре ниже 0°C (32°F). Несмотря на то, что аккумулятор заряжается нормально, на аноде происходит покрытие металлическим литием во время заряда под замораживанием, что приводит к необратимому ухудшению характеристик и безопасности. Аккумуляторы с литиевым покрытием более уязвимы при воздействии вибрации или других стрессовых условий. Усовершенствованные зарядные устройства (Cadex) предотвращают зарядку литий-ионных аккумуляторов при температуре ниже нуля.

Предпринимаются усовершенствования для зарядки литий-ионных аккумуляторов при температурах ниже нуля. Зарядка действительно возможна с большинством литий-ионных элементов, но только при очень низких токах. Согласно исследовательским документам, допустимая скорость зарядки при –30°C (–22°F) составляет 0,02°C. При таком малом токе время зарядки может увеличиться до 50 часов, что считается нецелесообразным. Однако существуют специальные литий-ионные аккумуляторы, которые могут заряжаться до –10°C (14°F) с меньшей скоростью.

Некоторые производители литий-ионных аккумуляторов предлагают специальные элементы для холодной зарядки. Также потребуются специальные зарядные устройства, которые снижают C-rate в зависимости от температуры и заряжают аккумулятор до более низкого пикового напряжения; Например, 4,00 В на ячейку вместо обычных 4,20 В на ячейку. Такие ограничения уменьшают энергию, которую может удерживать литий-ионный аккумулятор, примерно до 80% вместо обычных 100%. Время зарядки также будет увеличено и может длиться 12 часов и дольше в холодном состоянии.

Литий-ионные аккумуляторы, заряжаемые при температуре ниже 0°C (32°F), должны пройти нормативную проверку, чтобы подтвердить отсутствие литиевого покрытия. Кроме того, специально разработанное зарядное устройство будет поддерживать выделенный ток и напряжение в безопасных пределах во всем диапазоне температур. Сертификация таких аккумуляторов и зарядных устройств очень затратна, что отразится на цене. Аналогичные нормативные требования также применяются к искробезопасным батареям (см. BU-304: Зачем нужны схемы защиты?)

Некоторые производители аккумуляторов и зарядных устройств заявляют, что заряжают литий-ионные аккумуляторы при низких температурах; однако большинство компаний не хотят брать на себя риск потенциальной неудачи и брать на себя ответственность. Да, литий-ионные аккумуляторы будут заряжаться при низкой температуре, но исследовательские лаборатории, изучающие эти аккумуляторы, получают тревожные результаты.

Высокотемпературный заряд

Тепло — злейший враг аккумуляторов, в том числе свинцово-кислотных. Добавление температурной компенсации к свинцово-кислотному зарядному устройству для адаптации к колебаниям температуры продлевает срок службы батареи до 15 процентов. Рекомендуемая компенсация составляет 3 мВ на ячейку при повышении температуры на каждый градус Цельсия. Если для плавающего напряжения установлено значение 2,30 В/элемент при 25°C (77°F), напряжение должно составлять 2,27 В/элемент при 35°C (95°F). При более низких температурах напряжение должно составлять 2,33 В на элемент при 15°C (59°F). Эти корректировки на 10°C соответствуют изменению на 30 мВ.

В таблице 3 указано оптимальное пиковое напряжение при различных температурах при зарядке свинцово-кислотных аккумуляторов. В таблице также указано рекомендуемое плавающее напряжение в режиме ожидания.

Состояние батареи -40°C (-40°F) -20°C (-4°F) 0°C (32°F) 25°C (77°F) 40°C (104°F)
Ограничение напряжения
при перезарядке
2,85 В/ячейка 2,70 В/ячейка 2,55 В/ячейка 2,45 В/ячейка 2,35 В/ячейка
Плавающее напряжение
при полной зарядке
2,55 В/ячейка
или ниже
2,45 В/ячейка
или ниже
2,35 В/ячейка
или ниже
2,30 В/ячейка
или ниже
2,25 В/ячейка
или ниже
Таблица 3: Рекомендуемые пределы напряжения
при зарядке и обслуживании стационарных свинцово-кислотных аккумуляторов в режиме плавающего заряда. Компенсация напряжения продлевает срок службы батареи при работе в условиях экстремальных температур.

Зарядка аккумуляторов на основе никеля при высоких температурах снижает выделение кислорода, что снижает приемлемость заряда. Тепло обманывает зарядное устройство, заставляя его думать, что аккумулятор полностью заряжен, когда это не так.

Зарядка аккумуляторов на основе никеля в теплом состоянии снижает выделение кислорода, что снижает приемлемость заряда. Тепло обманывает зарядное устройство, заставляя его думать, что аккумулятор полностью заряжен, когда это не так. На Рисунке 4 показано сильное снижение эффективности заряда по сравнению с «100-процентной линией эффективности» при температуре выше 30°C (86°F). При 45°C (113°F) батарея может принять только 70% своей полной емкости; при 60°C (140°F) прием заряда снижается до 45 процентов. NDV для обнаружения полного заряда становится ненадежным при более высоких температурах, а измерение температуры необходимо для резервного копирования.

Рис. 4. Прием заряда NiCd в зависимости от температуры [2]

Высокая температура снижает прием заряда и отклоняется от пунктирной «линии 100% эффективности». При 55°C коммерческий NiMH имеет КПД заряда 35–40%; более новый промышленный NiMH достигает 75–80%.

Литий-ионный аккумулятор хорошо работает при повышенных температурах, но длительное воздействие тепла снижает срок службы. Зарядка и разрядка при повышенных температурах приводят к выделению газа, что может привести к вентилированию цилиндрического элемента и вздутию карманного элемента. Многие зарядные устройства запрещают зарядку при температуре выше 50°C (122°F).

Некоторые аккумуляторы на основе лития мгновенно нагреваются до высоких температур. Это относится к батареям в хирургических инструментах, которые стерилизуются при температуре 137°C (280°F) до 20 минут в процессе автоклавирования. Бурение нефтяных и газовых скважин как часть фрекинга также подвергает батарею воздействию высоких температур.

Потеря емкости при повышенной температуре находится в прямой зависимости от уровня заряда (SoC). Рисунок 5 иллюстрирует действие литий-кобальта (LiCoO2), который сначала подвергается циклированию при комнатной температуре (КТ), а затем нагревается до 130°C (266°F) в течение 90 минут и циклически на 20, 50 и 100 процентов SoC. Заметной потери емкости при комнатной температуре нет. При 130 °C с 20-процентной SoC наблюдается небольшая потеря емкости в течение 10 циклов. Эта потеря выше при 50-процентном SoC и показывает разрушительный эффект при циклическом включении при полной зарядке.

Рис. 5. Потеря емкости при комнатной температуре (RT) и 130°C в течение 90 минут [3]
Стерилизацию аккумуляторов для хирургических электроинструментов следует проводить при низкой SoC.

Испытание: ячеек LiCoO2/Graphite подвергали воздействию температуры 130°C в течение 90 минут при различных SoC между каждым циклом.

ОСТОРОЖНО В случае разрыва, утечки электролита или любой другой причины воздействия электролита немедленно промойте водой. При попадании в глаза промойте их водой в течение 15 минут и немедленно обратитесь к врачу.

Каталожные номера

[1] Источник: Betta Batteries
[2] Предоставлено Cadex
[3] Источник: Medical Medical

BU-502: Дис. люди, батареи лучше всего работают при комнатной температуре. Прогревание умирающей батареи в мобильном телефоне или фонарика в джинсах может обеспечить дополнительное время работы благодаря улучшенной электрохимической реакции. Вероятно, это также является причиной того, что производители предпочитают указывать батареи при температуре 27°C (80°F). Эксплуатация батареи при повышенных температурах повышает производительность, но длительное воздействие сокращает срок службы.

Как известно всем водителям в холодных странах, прогретая батарея крутит двигатель лучше, чем холодная. Низкая температура увеличивает внутреннее сопротивление и снижает емкость. Аккумулятор, обеспечивающий 100-процентную емкость при температуре 27°C (80°F), как правило, обеспечивает только 50-процентную емкость при –18°C (0°F). Мгновенное снижение емкости зависит от химического состава батареи.

Сухая твердая полимерная батарея требует температуры 60–100°C (140–212°F), чтобы стимулировать поток ионов и стать проводящим. Аккумуляторы этого типа нашли свою нишу на рынке стационарных источников питания в жарком климате, где тепло служит катализатором, а не недостатком. Встроенные нагревательные элементы обеспечивают постоянную работу батареи. Высокая стоимость батареи и соображения безопасности ограничивают применение этой системы. В более распространенных литий-полимерных используется гелеобразный электролит для повышения проводимости.

Все батареи имеют оптимальный срок службы при температуре 20°C (68°F) или чуть ниже. Если, например, батарея работает при температуре 30°C (86°F) вместо более умеренной более низкой комнатной температуры, срок службы сокращается на 20 процентов. При 40°C (104°F) потери подскакивают до колоссальных 40 процентов, а при зарядке и разрядке при 45°C (113°F) срок службы составляет лишь половину того, что можно ожидать при использовании при 20°. С (68°F). (См. также BU-808: Как продлить срок службы литиевых батарей)

Производительность всех батарей резко падает при низких температурах; однако повышенное внутреннее сопротивление вызовет некоторый эффект нагрева из-за потери эффективности, вызванной падением напряжения при подаче тока нагрузки. При –20°C (–4°F) большинство аккумуляторов работают примерно на 50-процентном уровне производительности. Хотя NiCd может опускаться до –40°C (–40°F), допустимый разряд составляет всего 0,2°C (5-часовой режим). Специальные литий-ионные аккумуляторы могут работать при температуре до –40°C, но только при уменьшенной скорости разряда; о зарядке при такой температуре не может быть и речи. При использовании свинцово-кислотного электролита существует опасность замерзания электролита, что может привести к растрескиванию корпуса. Свинцовая кислота замерзает быстрее при низком заряде, когда удельный вес больше похож на воду, чем при полном заряде.

На рис. 1 показано напряжение разряда литий-ионного аккумулятора 18650 при различных температурах. Разряд 3А элемента емкостью 2,8 Ач соответствует C-скорости 1,07C. Уменьшенная емкость при низкой температуре применяется только тогда, когда ячейка находится в этом состоянии, и восстанавливается при комнатной температуре.

0002 Аккумуляторы одинаковой емкости играют важную роль при разрядке при низкой температуре и большой нагрузке. Поскольку элементы в батарейном блоке никогда не могут быть идеально согласованы, отрицательный потенциал напряжения может возникнуть на более слабом элементе в многоэлементном блоке, если разрядка продолжается за пределами безопасной точки отсечки.